期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于HPO-SVM的拖拉机柴油机故障诊断研究 被引量:1
1
作者 周俊博 肖茂华 +2 位作者 朱烨均 宋宁 张婕 《南京农业大学学报》 CAS CSCD 北大核心 2023年第2期416-427,共12页
[目的]针对传统机器学习在拖拉机柴油机故障诊断应用中的局限性,本研究提出一种HPO-SVM(hybrid population optimization-support vector machine)拖拉机柴油机故障诊断模型。[方法]采用SVM(support vector machine)作为故障诊断模型的... [目的]针对传统机器学习在拖拉机柴油机故障诊断应用中的局限性,本研究提出一种HPO-SVM(hybrid population optimization-support vector machine)拖拉机柴油机故障诊断模型。[方法]采用SVM(support vector machine)作为故障诊断模型的基体,针对SVM优化问题,以PSO(particle swarm optimization)和GWO(grey wolf optimization)算法为基础提出了HPO(hybrid population optimization)算法对SVM的重要参数c、g进行优化;分析柴油机的故障机制,确定反映故障发生的数据信号;基于CAN(controller area network)总线和Arduino UNO-MCP 2551组合模块采集潍柴WP6型拖拉机柴油机传感器信号数据对HPO-SVM的性能进行测试,并将测试结果与SVM、PSO-SVM、GWO-SVM、GWOPSO-SVM和LWD-QPSO-SOMBP(linear weight decrease-quantum particle swarm optimization-self organizing maps back propagation)神经网络的测试结果进行对比。[结果]相比于其他4种SVM模型,HPO-SVM充分发挥了GWO算法和PSO算法在SVM参数寻优方面的优势,故障诊断准确率大幅度提升,相比于SVM,诊断总准确率由80%上升至100%,提高20%;HPO算法提高了单种群优化算法的寻优性能,相较于PSO算法,HPO算法最佳适应度由70提升至90,提高22.22%,达到最佳适应度时的迭代次数由105下降至27,下降74.29%;为避免偶然性,对5种SVM模型采取6次重复试验,试验结果表明,相较于其他4种模型HPO-SVM模型的性能更稳定,HPO-SVM的6次诊断总准确率均为100%;HPO-SVM采用SVM作为故障诊断模型,缓解优化算法的寻优压力,提高模型的效率,相比于LWD-QPSO-SOMBP神经网络,HPO-SVM模型的运行时间由45 s降低至15 s,下降66.67%。[结论]本文研究结果可为高效率拖拉机柴油机故障诊断提供参考。 展开更多
关键词 农业机械 柴油机 故障诊断 支持向量机 PSO算法 GWO算法 hpo算法
下载PDF
多策略改进的猎人猎物优化算法及其应用
2
作者 唐天兵 李继发 严毅 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第4期153-164,共12页
针对猎人猎物优化算法易陷入局部最优和收敛精度不足的问题,本文提出多策略改进的猎人猎物优化算法。该算法基于动态搜索思想,通过自适应机制从全局搜索转向局部开发;通过利用种群的历史信息来实施差分进化,从而增强种群的多样性;采用... 针对猎人猎物优化算法易陷入局部最优和收敛精度不足的问题,本文提出多策略改进的猎人猎物优化算法。该算法基于动态搜索思想,通过自适应机制从全局搜索转向局部开发;通过利用种群的历史信息来实施差分进化,从而增强种群的多样性;采用精英池策略和非线性步长相结合的方法,以防止算法陷入局部最优,并提升其收敛精度。在10个大规模(10 000维)测试函数上对改进后的算法和其他6种经典或最新的优化算法进行性能评估,结果显示,该算法在全局优化能力、寻优精度和稳定性方面均表现出色,能有效解决高维优化问题。最后,将多策略改进猎人猎物优化算法应用于三维无人机路径规划问题,仿真实验结果表明,该算法能求解到最优的无人机三维规划路径。 展开更多
关键词 猎人猎物优化算法 差分进化 高维优化 多策略 路径规划
下载PDF
改进猎人猎物优化算法在WSN覆盖中的应用
3
作者 杨乐 张达敏 +2 位作者 何庆 邓佳欣 左锋琴 《计算机应用》 CSCD 北大核心 2024年第8期2506-2513,共8页
针对传统无线传感器网络(WSN)节点部署覆盖盲区大、分布不均等问题,提出一种改进的猎人猎物优化(IHPO)算法优化网络覆盖。首先,在猎物位置更新阶段,引入差分进化(DE)思想并借助动态比例因子进行交叉变异,从而增强种群信息交流;其次,在... 针对传统无线传感器网络(WSN)节点部署覆盖盲区大、分布不均等问题,提出一种改进的猎人猎物优化(IHPO)算法优化网络覆盖。首先,在猎物位置更新阶段,引入差分进化(DE)思想并借助动态比例因子进行交叉变异,从而增强种群信息交流;其次,在全局最优位置更新阶段,由α稳定分布提出自适应α变异对全局最优位置进行扰动,从而平衡不同时期算法的性能需求;最后,利用自适应α变异扰动的全局最优位置引导种群完成动态反向学习,从而增加种群的全局搜索能力和多样性。在WSN覆盖问题中,使用IHPO优化的网络节点分布更均匀、覆盖率更高,在传感器感知能力不足时能达到92.56%的覆盖率,对比原始HPO算法优化的节点提高了25.74%,对比改进粒子群优化(IPSO)算法、改进灰狼优化算法(IGWO)优化的节点分别提高了13.98%、16.41%。同时,IHPO算法优化的节点能耗更均衡,在路由测试中的网络工作时间可以延长至2500轮次。 展开更多
关键词 猎人猎物优化算法 差分进化 自适应α变异 动态反向学习 无线传感器网络覆盖
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部