Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate th...Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate the influence of AC faults on BIC itself and on DC sub-grid,which potentially threaten both converter safety and system reliability.This study first investigates AC fault influence on the BIC and DC bus voltage under different BIC control modes and different pre-fault operation states,by developing a mathematical model and equivalent sequence network.Second,based on the analysis results,a general accommodative current limiting strategy is proposed for BIC without limitations to specific mode or operation condition.Current amplitude is predicted and constrained according to the critical requirements to protect the BIC and relieving the AC fault influence on the DC bus voltage.Compared with conventional methods,potential current limit failure and distortions under asymmetric faults can also be avoided.Finally,experiments verify feasibility of the proposed method.展开更多
In this paper,a Backstepping Global Integral Terminal Sliding Mode Controller(BGITSMC)with the view to enhancing the dynamic stability of a hybrid AC/DC microgrid has been presented.The proposed approach controls the ...In this paper,a Backstepping Global Integral Terminal Sliding Mode Controller(BGITSMC)with the view to enhancing the dynamic stability of a hybrid AC/DC microgrid has been presented.The proposed approach controls the switch-ing signals of the inverter,interlinking the DC-bus with the AC-bus in an AC/DC microgrid for a seamless interface and regulation of the output power of renewable energy sources(Solar Photovoltaic unit,PMSG-based wind farm),and Battery Energy Storage System.The proposed control approach guarantees the dynamic stability of a hybrid AC/DC microgrid by regulating the associated states of the microgrid system to their intended values.The dynamic stabil-ity of the microgrid system with the proposed control law has been proved using the Control Lyapunov Function.A simulation analysis was performed on a test hybrid AC/DC microgrid system to demonstrate the performance of the proposed control strategy in terms of maintaining power balance while the system’s operating point changed.Furthermore,the superiority of the proposed approach has been demonstrated by comparing its performance with the existing Sliding Mode Control(SMC)approach for a hybrid AC/DC microgrid.展开更多
This paper presents control methods for hybrid AC/DC microgrid under islanding operation condition.The control schemes for AC sub-microgrid and DC sub-microgrid are investigated according to the power sharing requirem...This paper presents control methods for hybrid AC/DC microgrid under islanding operation condition.The control schemes for AC sub-microgrid and DC sub-microgrid are investigated according to the power sharing requirement and operational reliability.In addition,the key control schemes of interlinking converter with DC-link capacitor or energy storage,which will devote to the proper power sharing between AC and DC sub-microgrids to maintain AC and DC side voltage stable,is reviewed.Combining the specific control methods developed for AC and DC sub-microgrids with interlinking converter,the whole hybrid AC/DC microgrid can manage the power flow transferred between sub-microgrids for improving on the operational quality and efficiency.展开更多
This paper applies double-uncertainty optimization theory to the operation of AC/DC hybrid microgrids to deal with uncertainties caused by a high proportion of intermittent energy sources.A fuzzy stochastic expectatio...This paper applies double-uncertainty optimization theory to the operation of AC/DC hybrid microgrids to deal with uncertainties caused by a high proportion of intermittent energy sources.A fuzzy stochastic expectation economic model for day-ahead scheduling based on uncertain optimization theory is proposed to minimize the operational costs of hybrid AC/DC microgrids.The fuzzy stochastic alternating direction multiplier method is proposed to solve the double-uncertainty optimization problem.A real-time intra-day unbalanced power adjustment model is established to minimize real-time adjustment costs.Through comparative analysis of deterministic optimization,stochastic optimization and fuzzy stochastic optimization of day-ahead scheduling and real-time adjustment,the validity of fuzzy stochastic optimization based on a fuzzy stochastic expectation model is proved.展开更多
There are four basic operational modes for the hybrid AC/DC microgrid,including AC grid-connected while interconnecting,both off-grid while interconnecting,AC gridconnected without connection,and both off-grid withou...There are four basic operational modes for the hybrid AC/DC microgrid,including AC grid-connected while interconnecting,both off-grid while interconnecting,AC gridconnected without connection,and both off-grid without connection.How to achieve a seamless operational mode transition is an urgent technical need to overcome.First,this paper describes the typical structure of the hybrid microgrid,and places a detailed focus on the power balance and transition strategy.Secondly,it takes the master-slave control structure as an example,and designs the transition logic for different operational modes,and then a method for selecting the slack bus and transition time-sequence is proposed.Based on the different roles that the interlinking converter(IC)plays in the process of modes transition,a voltage-power(U-P)control method for a hybrid AC/DC microgrid is proposed,and the exchanged power is calculated based on the voltage deviation between the rating value and measured value.Finally,a control flowchart for the transition between the four operational modes in transition is designed.Using the PSCAD/EMTDC platform,this paper takes a typical seven-point microgrid structure as an example,the proposed transition strategy is carried out,and the results show that the transition method and time sequence can achieve smooth transition between different operational modes.展开更多
This paper presents a comprehensive control scheme for the interlinking converter(ILC)in a hybrid AC/DC microgrid consisting of the outer loop flexible power sharing control and the improved robust inner loop control....This paper presents a comprehensive control scheme for the interlinking converter(ILC)in a hybrid AC/DC microgrid consisting of the outer loop flexible power sharing control and the improved robust inner loop control.The outer loop power control of ILC is presented to achieve flexible power sharing of distributed generations(DGs)in the hybrid microgrid,depending on different power management objectives,which is realized based on the deduced balance state equation,and regulating the frequency and DC voltage at the same time.The improved robust inner loop control of ILC is also presented to suppress external disturbance and system model uncertainties with the improved dynamic response.This improved inner loop control which includes a disturbance observer link,can force the converter current to track the reference value with no steady error and improve the dynamic stability of the microgrid・With the proposed outer loop power sharing control and improved inner loop control,the comprehensive control scheme for the ILC is presented・Simulations cases show the effectiveness and superiority of the proposed comprehensive control scheme.展开更多
Taking the consumption rate of renewable energy and the operation cost of hybrid AC/DC microgrid as the optimization objectives,the adjustment of load demand curves is carried out considering the demand side response(...Taking the consumption rate of renewable energy and the operation cost of hybrid AC/DC microgrid as the optimization objectives,the adjustment of load demand curves is carried out considering the demand side response(DSR)on the load side.The complementary utilization of renewable energy between AC area and DC area is achieved to meet the load demand on the source side.In the network side,the hybrid AC/DC microgrids purchase electricity from the power grid at the time-of-use(TOU)price and sell the surplus power of renewable energy to the power grid for profits.The improved memetic algorithm(IMA)is introduced and applied to solve the established mathematical model.The promotion effect of the proposed source-network-load coordination strategies on the optimal operation of hybrid AC/DC microgrid is verified.展开更多
This paper proposes an adaptive integrated hybrid AC/DC microgrid module to accommodate a wide range of distributed renewable energy resources(DRERs),distributed energy storage devices(DESDs)and distributed demand res...This paper proposes an adaptive integrated hybrid AC/DC microgrid module to accommodate a wide range of distributed renewable energy resources(DRERs),distributed energy storage devices(DESDs)and distributed demand resources(DDRs)into the existing distribution systems.This microgrid module is designed to be portable,scalable,easy to deploy,and simple to operate.The modeling of the proposed microgrid module,based on the IEC 61850 standard,is presented.A novel logical node is introduced,which describes functionalities of the bidirectional interlinking converter(BIC)interfacing AC sub-grid and DC sub-grid in a better way.To achieve the target of plug-and-play functionalities,specific microgrid module communication network(MMCN)and microgrid module operating systems(MMOS)are designed and implemented in the hardware prototype built in the laboratory.Experimental results obtained from the lab prototype clearly validate the effectiveness of the proposed design of the microgrid module,communication network and operating system.展开更多
针对交直流混合微电网中双向AC/DC换流器在外界扰动下出现的直流母线电压波动问题,设计了一种应用于双向AC/DC换流器的非线性扩张状态观测器(nonlinear extended state observer,NLESO),以实现对分布式电源功率波动和负荷投切变化等不...针对交直流混合微电网中双向AC/DC换流器在外界扰动下出现的直流母线电压波动问题,设计了一种应用于双向AC/DC换流器的非线性扩张状态观测器(nonlinear extended state observer,NLESO),以实现对分布式电源功率波动和负荷投切变化等不确定因素的快速追踪与补偿,保证了在不同扰动下交直流混合微电网的稳定性。进一步提出了基于NLESO的改进积分滑模控制方法,提高了直流母线电压的控制精度。结合非线性光滑函数设计了滑模趋近律,消除了传统滑模控制中的高频抖振现象。通过Lyapunov理论对系统的稳定性进行分析验证,仿真结果表明该控制方法响应速度快、控制精度高、抗扰动能力强并且无抖振现象。展开更多
The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/D...The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.展开更多
This paper presents performance analysis on hybrid AC/DC microgrid networks for residential home cluster. The design of the proposed microgrid includes comprehensive types of Distributed Generators (DGs) as hybrid pow...This paper presents performance analysis on hybrid AC/DC microgrid networks for residential home cluster. The design of the proposed microgrid includes comprehensive types of Distributed Generators (DGs) as hybrid power sources (wind, Photovoltaic (PV) solar cell, battery, fuel cell). Details about each DG dynamic modeling are presented and discussed. The customers in home cluster can be connected in both of the operating modes: islanded to the microgrid or connected to utility grid. Each DG has appended control system with its modeling that will be discussed to control DG performance. The wind turbine will be controlled by AC control system within three sub-control systems: 1) speed regulator and pitch control, 2) rotor side converter control, and 3) grid side converter control. The AC control structure is based on PLL, current regulator and voltage booster converter with using of photovoltaic Voltage Source Converter (VSC) and inverters to connect to the grid. The DC control system is mainly based on Maximum Power Point Tracking (MPPT) controller and boost converter connected to the PV array block and in order to control the system. The case study is used to analyze the performance of the proposed microgrid. The buses voltages, active power and reactive power responses are presented in both of grid-connected and islanded modes. In addition, the power factor, Total Harmonic Distortion (THD) and modulation index are calculated.展开更多
China Southern Power Grid is a unique EHV AC/DC hybrid transmission network that operates in China. In its service area, the distribution of energy resources and the development of economy are extremely unbalanced, so...China Southern Power Grid is a unique EHV AC/DC hybrid transmission network that operates in China. In its service area, the distribution of energy resources and the development of economy are extremely unbalanced, so long-distance and bulk power transmission are needed; besides, the geography and climate conditions are serious, rains, fogs, lightning and typhoon as well as high temperature are common all the year round. Facing these challenges, the power grid enhanced stability control, improved the equipment and strengthen the network structure. In the future, the power grid plans to optimize the disposition of power sources and build digitalized power system.展开更多
文摘Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC sub-grids.However,the variety of control modes and flexible bidirectional power flow complicate the influence of AC faults on BIC itself and on DC sub-grid,which potentially threaten both converter safety and system reliability.This study first investigates AC fault influence on the BIC and DC bus voltage under different BIC control modes and different pre-fault operation states,by developing a mathematical model and equivalent sequence network.Second,based on the analysis results,a general accommodative current limiting strategy is proposed for BIC without limitations to specific mode or operation condition.Current amplitude is predicted and constrained according to the critical requirements to protect the BIC and relieving the AC fault influence on the DC bus voltage.Compared with conventional methods,potential current limit failure and distortions under asymmetric faults can also be avoided.Finally,experiments verify feasibility of the proposed method.
文摘In this paper,a Backstepping Global Integral Terminal Sliding Mode Controller(BGITSMC)with the view to enhancing the dynamic stability of a hybrid AC/DC microgrid has been presented.The proposed approach controls the switch-ing signals of the inverter,interlinking the DC-bus with the AC-bus in an AC/DC microgrid for a seamless interface and regulation of the output power of renewable energy sources(Solar Photovoltaic unit,PMSG-based wind farm),and Battery Energy Storage System.The proposed control approach guarantees the dynamic stability of a hybrid AC/DC microgrid by regulating the associated states of the microgrid system to their intended values.The dynamic stabil-ity of the microgrid system with the proposed control law has been proved using the Control Lyapunov Function.A simulation analysis was performed on a test hybrid AC/DC microgrid system to demonstrate the performance of the proposed control strategy in terms of maintaining power balance while the system’s operating point changed.Furthermore,the superiority of the proposed approach has been demonstrated by comparing its performance with the existing Sliding Mode Control(SMC)approach for a hybrid AC/DC microgrid.
文摘This paper presents control methods for hybrid AC/DC microgrid under islanding operation condition.The control schemes for AC sub-microgrid and DC sub-microgrid are investigated according to the power sharing requirement and operational reliability.In addition,the key control schemes of interlinking converter with DC-link capacitor or energy storage,which will devote to the proper power sharing between AC and DC sub-microgrids to maintain AC and DC side voltage stable,is reviewed.Combining the specific control methods developed for AC and DC sub-microgrids with interlinking converter,the whole hybrid AC/DC microgrid can manage the power flow transferred between sub-microgrids for improving on the operational quality and efficiency.
基金supported by the National Natural Science Foundation of China(No.51577068)Science&Technology Foundation of SGCC(No.520201150012)
文摘This paper applies double-uncertainty optimization theory to the operation of AC/DC hybrid microgrids to deal with uncertainties caused by a high proportion of intermittent energy sources.A fuzzy stochastic expectation economic model for day-ahead scheduling based on uncertain optimization theory is proposed to minimize the operational costs of hybrid AC/DC microgrids.The fuzzy stochastic alternating direction multiplier method is proposed to solve the double-uncertainty optimization problem.A real-time intra-day unbalanced power adjustment model is established to minimize real-time adjustment costs.Through comparative analysis of deterministic optimization,stochastic optimization and fuzzy stochastic optimization of day-ahead scheduling and real-time adjustment,the validity of fuzzy stochastic optimization based on a fuzzy stochastic expectation model is proved.
基金supported by the National High Technology Research and Development Program(“863”Project)under Grant 2015AA050102.
文摘There are four basic operational modes for the hybrid AC/DC microgrid,including AC grid-connected while interconnecting,both off-grid while interconnecting,AC gridconnected without connection,and both off-grid without connection.How to achieve a seamless operational mode transition is an urgent technical need to overcome.First,this paper describes the typical structure of the hybrid microgrid,and places a detailed focus on the power balance and transition strategy.Secondly,it takes the master-slave control structure as an example,and designs the transition logic for different operational modes,and then a method for selecting the slack bus and transition time-sequence is proposed.Based on the different roles that the interlinking converter(IC)plays in the process of modes transition,a voltage-power(U-P)control method for a hybrid AC/DC microgrid is proposed,and the exchanged power is calculated based on the voltage deviation between the rating value and measured value.Finally,a control flowchart for the transition between the four operational modes in transition is designed.Using the PSCAD/EMTDC platform,this paper takes a typical seven-point microgrid structure as an example,the proposed transition strategy is carried out,and the results show that the transition method and time sequence can achieve smooth transition between different operational modes.
基金supported in part by the National Natural Science Foundation of China(52007050)by the Fundamental Research Funds for the Central Universities(B210202062).
文摘This paper presents a comprehensive control scheme for the interlinking converter(ILC)in a hybrid AC/DC microgrid consisting of the outer loop flexible power sharing control and the improved robust inner loop control.The outer loop power control of ILC is presented to achieve flexible power sharing of distributed generations(DGs)in the hybrid microgrid,depending on different power management objectives,which is realized based on the deduced balance state equation,and regulating the frequency and DC voltage at the same time.The improved robust inner loop control of ILC is also presented to suppress external disturbance and system model uncertainties with the improved dynamic response.This improved inner loop control which includes a disturbance observer link,can force the converter current to track the reference value with no steady error and improve the dynamic stability of the microgrid・With the proposed outer loop power sharing control and improved inner loop control,the comprehensive control scheme for the ILC is presented・Simulations cases show the effectiveness and superiority of the proposed comprehensive control scheme.
基金supported by the National Natural Science Foundation of China(No.51577068)the National High Technology Research and Development Program of China(863 Program)(No.2015AA050104).
文摘Taking the consumption rate of renewable energy and the operation cost of hybrid AC/DC microgrid as the optimization objectives,the adjustment of load demand curves is carried out considering the demand side response(DSR)on the load side.The complementary utilization of renewable energy between AC area and DC area is achieved to meet the load demand on the source side.In the network side,the hybrid AC/DC microgrids purchase electricity from the power grid at the time-of-use(TOU)price and sell the surplus power of renewable energy to the power grid for profits.The improved memetic algorithm(IMA)is introduced and applied to solve the established mathematical model.The promotion effect of the proposed source-network-load coordination strategies on the optimal operation of hybrid AC/DC microgrid is verified.
文摘This paper proposes an adaptive integrated hybrid AC/DC microgrid module to accommodate a wide range of distributed renewable energy resources(DRERs),distributed energy storage devices(DESDs)and distributed demand resources(DDRs)into the existing distribution systems.This microgrid module is designed to be portable,scalable,easy to deploy,and simple to operate.The modeling of the proposed microgrid module,based on the IEC 61850 standard,is presented.A novel logical node is introduced,which describes functionalities of the bidirectional interlinking converter(BIC)interfacing AC sub-grid and DC sub-grid in a better way.To achieve the target of plug-and-play functionalities,specific microgrid module communication network(MMCN)and microgrid module operating systems(MMOS)are designed and implemented in the hardware prototype built in the laboratory.Experimental results obtained from the lab prototype clearly validate the effectiveness of the proposed design of the microgrid module,communication network and operating system.
文摘针对交直流混合微电网中双向AC/DC换流器在外界扰动下出现的直流母线电压波动问题,设计了一种应用于双向AC/DC换流器的非线性扩张状态观测器(nonlinear extended state observer,NLESO),以实现对分布式电源功率波动和负荷投切变化等不确定因素的快速追踪与补偿,保证了在不同扰动下交直流混合微电网的稳定性。进一步提出了基于NLESO的改进积分滑模控制方法,提高了直流母线电压的控制精度。结合非线性光滑函数设计了滑模趋近律,消除了传统滑模控制中的高频抖振现象。通过Lyapunov理论对系统的稳定性进行分析验证,仿真结果表明该控制方法响应速度快、控制精度高、抗扰动能力强并且无抖振现象。
基金supported by National Key Research and Development Program of China (2016YFB0900500,2017YFB0903100)the State Grid Science and Technology Project (SGRI-DL-F1-51-011)
文摘The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.
文摘This paper presents performance analysis on hybrid AC/DC microgrid networks for residential home cluster. The design of the proposed microgrid includes comprehensive types of Distributed Generators (DGs) as hybrid power sources (wind, Photovoltaic (PV) solar cell, battery, fuel cell). Details about each DG dynamic modeling are presented and discussed. The customers in home cluster can be connected in both of the operating modes: islanded to the microgrid or connected to utility grid. Each DG has appended control system with its modeling that will be discussed to control DG performance. The wind turbine will be controlled by AC control system within three sub-control systems: 1) speed regulator and pitch control, 2) rotor side converter control, and 3) grid side converter control. The AC control structure is based on PLL, current regulator and voltage booster converter with using of photovoltaic Voltage Source Converter (VSC) and inverters to connect to the grid. The DC control system is mainly based on Maximum Power Point Tracking (MPPT) controller and boost converter connected to the PV array block and in order to control the system. The case study is used to analyze the performance of the proposed microgrid. The buses voltages, active power and reactive power responses are presented in both of grid-connected and islanded modes. In addition, the power factor, Total Harmonic Distortion (THD) and modulation index are calculated.
文摘China Southern Power Grid is a unique EHV AC/DC hybrid transmission network that operates in China. In its service area, the distribution of energy resources and the development of economy are extremely unbalanced, so long-distance and bulk power transmission are needed; besides, the geography and climate conditions are serious, rains, fogs, lightning and typhoon as well as high temperature are common all the year round. Facing these challenges, the power grid enhanced stability control, improved the equipment and strengthen the network structure. In the future, the power grid plans to optimize the disposition of power sources and build digitalized power system.