For BCI systems,it is important to have an accurate and less complex architecture to control a device with enhanced accuracy.In this paper,a novel methodology for more accurate detection of the hemodynamic response ha...For BCI systems,it is important to have an accurate and less complex architecture to control a device with enhanced accuracy.In this paper,a novel methodology for more accurate detection of the hemodynamic response has been developed using a multimodal brain-computer interface(BCI).An integrated classifier has been developed for achieving better classification accuracy using two modalities.An integrated EEG-fNIRS-based vector-phase analysis(VPA)has been conducted.An open-source dataset collected at the TechnischeUniversit鋞Berlin,including simultaneous electroencephalography(EEG)and functional near-infrared spectroscopy(fNIRS)signals of 26 healthy participants during n-back tests,has been used for this research.Instrumental and physiological noise removal has been done using preprocessing techniques followed by individually detecting activity in both modalities.With resting state threshold circle,VPA has been used to detect a hemodynamic response in fNIRS signals,whereas phase plots for EEG signals have been constructed using Hilbert Transform to detect the activity in each trial.Multiple threshold circles are drawn in the vector plane,where each circle is drawn after task completion in each trial of EEG signal.Finally,both processes are integrated into one vector-phase plot to get combined detection of hemodynamic response for activity.Results of this study illustrate that the combined EEG-fNIRS VPA yields considerably higher average classification accuracy,that is 91.35%,as compared to other classifiers such as support vector machine(SVM),convolutional neural networks(CNN),deep neural networks(DNN)and VPA(with dual-threshold circles)with classification accuracies 82%,89%,87%and 86%respectively.Outcomes of this research demonstrate that improved classification performance can be feasibly achieved using multimodal VPA for EEG-fNIRS hybrid data.展开更多
This paper presents a hybrid brain-computer interface (BCI) control strategy,the goal of which is to expand control functions of a conventional motor imagery or a P300 potential based BCI in a virtual environment.The ...This paper presents a hybrid brain-computer interface (BCI) control strategy,the goal of which is to expand control functions of a conventional motor imagery or a P300 potential based BCI in a virtual environment.The hybrid control strategy utilizes P300 potential to control virtual devices and motor imagery related sensorimotor rhythms to navigate in the virtual world.The two electroencephalography (EEG) patterns serve as source signals for different control functions in their corresponding system states,and state switch is achieved in a sequential manner.In the current system,imagination of left/right hand movement was translated into turning left/right in the virtual apartment continuously,while P300 potentials were mapped to discrete virtual device control commands using a five-oddball paradigm.The combination of motor imagery and P300 patterns in one BCI system for virtual environment control was tested and the results were compared with those of a single motor imagery or P300-based BCI.Subjects obtained similar performances in the hybrid and single control tasks,which indicates the hybrid control strategy works well in the virtual environment.展开更多
基金National University of Sciences and Technology supported the research.
文摘For BCI systems,it is important to have an accurate and less complex architecture to control a device with enhanced accuracy.In this paper,a novel methodology for more accurate detection of the hemodynamic response has been developed using a multimodal brain-computer interface(BCI).An integrated classifier has been developed for achieving better classification accuracy using two modalities.An integrated EEG-fNIRS-based vector-phase analysis(VPA)has been conducted.An open-source dataset collected at the TechnischeUniversit鋞Berlin,including simultaneous electroencephalography(EEG)and functional near-infrared spectroscopy(fNIRS)signals of 26 healthy participants during n-back tests,has been used for this research.Instrumental and physiological noise removal has been done using preprocessing techniques followed by individually detecting activity in both modalities.With resting state threshold circle,VPA has been used to detect a hemodynamic response in fNIRS signals,whereas phase plots for EEG signals have been constructed using Hilbert Transform to detect the activity in each trial.Multiple threshold circles are drawn in the vector plane,where each circle is drawn after task completion in each trial of EEG signal.Finally,both processes are integrated into one vector-phase plot to get combined detection of hemodynamic response for activity.Results of this study illustrate that the combined EEG-fNIRS VPA yields considerably higher average classification accuracy,that is 91.35%,as compared to other classifiers such as support vector machine(SVM),convolutional neural networks(CNN),deep neural networks(DNN)and VPA(with dual-threshold circles)with classification accuracies 82%,89%,87%and 86%respectively.Outcomes of this research demonstrate that improved classification performance can be feasibly achieved using multimodal VPA for EEG-fNIRS hybrid data.
基金supported by the National Natural Science Foundation of China (Nos.30800287,60703038,60873125,61001172,and 61031002)the Zhejiang Provincial Natural Science Foundation of China (No.Y2090707)the Fundamental Research Funds for the Central Universities of China
文摘This paper presents a hybrid brain-computer interface (BCI) control strategy,the goal of which is to expand control functions of a conventional motor imagery or a P300 potential based BCI in a virtual environment.The hybrid control strategy utilizes P300 potential to control virtual devices and motor imagery related sensorimotor rhythms to navigate in the virtual world.The two electroencephalography (EEG) patterns serve as source signals for different control functions in their corresponding system states,and state switch is achieved in a sequential manner.In the current system,imagination of left/right hand movement was translated into turning left/right in the virtual apartment continuously,while P300 potentials were mapped to discrete virtual device control commands using a five-oddball paradigm.The combination of motor imagery and P300 patterns in one BCI system for virtual environment control was tested and the results were compared with those of a single motor imagery or P300-based BCI.Subjects obtained similar performances in the hybrid and single control tasks,which indicates the hybrid control strategy works well in the virtual environment.