This paper proposes a hybrid full-wave analysis using Finite-Difference Time-Domain (FDTD) and Wave Concept Iterative Process (WCIP) methods, developed to analyze locally arbitrarily shaped microwave structures and Mu...This paper proposes a hybrid full-wave analysis using Finite-Difference Time-Domain (FDTD) and Wave Concept Iterative Process (WCIP) methods, developed to analyze locally arbitrarily shaped microwave structures and Multilayer Planar structure. Using the equivalence principle, the original problem can be decomposed into two sub regions and solve each sub region separately. An interpolation scheme is proposed for communicating between the FDTD fields and WCIP wave, which will not require the effort of fitting the WCIP mesh to the FDTD cells in the interface region. This method is applied to calculate the scattering parameters of arbitrary (3-D) microwave structures. Applying FDTD to 3D discontinuity and WCIP to the remaining region preserves the advantages of both WCIP flexibility and FDTD efficiency. A comparison of the results with the FDTD staircasing data verifies the accuracy of the proposed method.展开更多
针对越来越严重的信号畸变和线间耦合问题,应用时域有限差分法(FiniteDifference Time Domain,FDTD)建立了不均匀多导体传输线的仿真模型,并通过MATLAB编程对不均匀多导体传输线两端的电压响应进行了仿真分析.在此基础上,理论说明了各...针对越来越严重的信号畸变和线间耦合问题,应用时域有限差分法(FiniteDifference Time Domain,FDTD)建立了不均匀多导体传输线的仿真模型,并通过MATLAB编程对不均匀多导体传输线两端的电压响应进行了仿真分析.在此基础上,理论说明了各端口瞬态响应的波形特点.结果表明了时域有限差分法用于分析多导体传输系统电磁兼容问题的正确性和有效性,为电磁干扰的预测提供了有价值的参考信息.展开更多
Propagation prediction is very important in the design of wirelesscommunication systems. A combined ray tracing and Finite-Difference Time-Domain (FDTD) method isimproved on modeling the indoor radio propagation by ap...Propagation prediction is very important in the design of wirelesscommunication systems. A combined ray tracing and Finite-Difference Time-Domain (FDTD) method isimproved on modeling the indoor radio propagation by applying Perfectly Matched Layer (PML)Absorbing Boundary Conditions (ABCs) to FDTD grid. Thus, more accurate propagation prediction can beobtained.展开更多
Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a no...Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments(MoM) with finite-difference time-domain(FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples.展开更多
文摘This paper proposes a hybrid full-wave analysis using Finite-Difference Time-Domain (FDTD) and Wave Concept Iterative Process (WCIP) methods, developed to analyze locally arbitrarily shaped microwave structures and Multilayer Planar structure. Using the equivalence principle, the original problem can be decomposed into two sub regions and solve each sub region separately. An interpolation scheme is proposed for communicating between the FDTD fields and WCIP wave, which will not require the effort of fitting the WCIP mesh to the FDTD cells in the interface region. This method is applied to calculate the scattering parameters of arbitrary (3-D) microwave structures. Applying FDTD to 3D discontinuity and WCIP to the remaining region preserves the advantages of both WCIP flexibility and FDTD efficiency. A comparison of the results with the FDTD staircasing data verifies the accuracy of the proposed method.
文摘提出一种新的节省计算空间的FDTD-PWS混合算法,并应用于透镜天线的焦面场分析.首先采用FDTD(Finite-Difference Time-Domain)求解得到聚焦透镜天线的口面场的幅度和相位分布,再通过PWS(Plane Wave Spectrum)外推至焦平面,求解得出焦面场分布.根据天线场分布的对称性,将PEC(Perfect Electric Conductor)和PMC(Perfect Magnetic Conduc-tor)边界应用于FDTD的仿真过程,使仿真模型缩减为原模型的1/4,进一步节省了计算空间.应用于毫米波聚焦透镜天线的焦面场仿真分析,并对其焦面场进行平面近场扫描测试,将仿真结果进行探头补偿后与实验数据作比较,证明该方法是精确和高效的.
文摘针对越来越严重的信号畸变和线间耦合问题,应用时域有限差分法(FiniteDifference Time Domain,FDTD)建立了不均匀多导体传输线的仿真模型,并通过MATLAB编程对不均匀多导体传输线两端的电压响应进行了仿真分析.在此基础上,理论说明了各端口瞬态响应的波形特点.结果表明了时域有限差分法用于分析多导体传输系统电磁兼容问题的正确性和有效性,为电磁干扰的预测提供了有价值的参考信息.
文摘Propagation prediction is very important in the design of wirelesscommunication systems. A combined ray tracing and Finite-Difference Time-Domain (FDTD) method isimproved on modeling the indoor radio propagation by applying Perfectly Matched Layer (PML)Absorbing Boundary Conditions (ABCs) to FDTD grid. Thus, more accurate propagation prediction can beobtained.
基金Supported in part by China Postdoctoral Science Foundation under Grant No.201M550839in part by the Key Research Program of the Chinese Academy of Sciences under Grant No.KGZD-EW-603
文摘Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments(MoM) with finite-difference time-domain(FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples.