A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problem...A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problems in single and multi-layer materials. In the proposed approach, a new variational functional is firstly constructed for the proposed HFS-FE model and the related existence of extremum is presented. Then, the assumed internal potential field constructed by the linear combination of fundamental solutions at points outside the elemental domain under consideration is used as the internal interpolation function, which analytically satisfies the governing equation within each element. As a result, the domain integrals in the variational functional formulation can be converted into the boundary integrals which can significantly simplify the calculation of the element stiffness matrix. The independent frame field is also introduced to guarantee the inter-element continuity and the stationary condition of the new variational functional is used to obtain the final stiffness equations. The proposed method inherits the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional finite element method (FEM) and boundary element method (BEM), and avoids the difficulty in selecting appropriate terms of T-complete functions used in HT-FEM, as the fundamental solutions contain usually one term only, rather than a series containing infinitely many terms. Further, the fundamental solutions of a problem are, in general, easier to derive than the T-complete functions of that problem. Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show good numerical accuracy and remarkable insensitivity to mesh distortion.展开更多
A variational principle of hybrid FEM is proposed to solve the flow in a visco-elaslic pipe. As an example, the influence of an axisymmetrical stenosis on an artery vibrating flow with a single frequency is calculated.
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f...This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.展开更多
We have developed a hybrid solver that combines the finite-element and integralequation method for 3D CSEM modeling based on unstructured meshes. To avoid the source singularity, the secondary field is used in the mod...We have developed a hybrid solver that combines the finite-element and integralequation method for 3D CSEM modeling based on unstructured meshes. To avoid the source singularity, the secondary field is used in the modeling framework. The primary electromagnetic field from an electric dipole source in a layered medium is calculated based on the magnetic vector potential method. The inhomogeneities of the computational region are discretized by a vector-based finite-element mesh with boundaries at finite distance from the inhomogeneities by using the dyadic Green's function, reducing the truncation boundary effect and the solution region. The electric and magnetic Green's function is used in data postprocessing to reduce the numerical errors owing to inaccurate gradients because of unstructured meshes; thus, the electromagnetic field is more accurately calculated. Finally, the proposed algorithm is applied to a block and a disc model, and we assess the topography effect on the field components.展开更多
A series of experiments was carried out so as to elucidate the effect of the phase transformation in the cooling process on welding distortion and residual stress generated by laser beam welding (LBW) and laser-arc hy...A series of experiments was carried out so as to elucidate the effect of the phase transformation in the cooling process on welding distortion and residual stress generated by laser beam welding (LBW) and laser-arc hybrid welding (HYBW) on the high strength steel (HT780). Then, the experiments were simulated by 3D thermal elasticplastic analysis with FEM (Finite Element Method) which was performed with using the idealized mechanical properties considering the transformation superplasticity. From the results, the effects of the phase transformation on welding distortion and residual stress generated by LBW and HYBW were elucidated. Furthermore, the generality of the idealization of the mechanical properties was verified.展开更多
In this paper, woven fabrics of glass fiber/carbon fiber intra-hybrid in plain structure were used to fabricate fiber reinforced plastic (FRP) composite by hand lay-up method. The investigation on tensile property was...In this paper, woven fabrics of glass fiber/carbon fiber intra-hybrid in plain structure were used to fabricate fiber reinforced plastic (FRP) composite by hand lay-up method. The investigation on tensile property was carried out on specimens in 7 orientations including 0°/5°/15°/75°/85°/90° in previous works. With the specimen parameters and experimental data, FEM model was built by the software of Marc. By combining the experimental results and finite element analysis, the modulus was simulated and calculated at the first stage. Then interfacial stress of the 0 degree and 90 degree was also calculated. By the initial fracture stress data from experiment as well as the simulation value of interfacial strength of 0 and 90 degree, the initial fracture stress of the off-axial specimens wascalculated and predicted. The result shows that the interfacial strength of the glass fiber bundle is higher than that of the carbon fiber bundle in transverse direction. By using the interfacial strength and according to the Von Mises yielding criterion, the initial fracture stress was predicted, which can be a contribution to the design or predict of the material properties.展开更多
文摘A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problems in single and multi-layer materials. In the proposed approach, a new variational functional is firstly constructed for the proposed HFS-FE model and the related existence of extremum is presented. Then, the assumed internal potential field constructed by the linear combination of fundamental solutions at points outside the elemental domain under consideration is used as the internal interpolation function, which analytically satisfies the governing equation within each element. As a result, the domain integrals in the variational functional formulation can be converted into the boundary integrals which can significantly simplify the calculation of the element stiffness matrix. The independent frame field is also introduced to guarantee the inter-element continuity and the stationary condition of the new variational functional is used to obtain the final stiffness equations. The proposed method inherits the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional finite element method (FEM) and boundary element method (BEM), and avoids the difficulty in selecting appropriate terms of T-complete functions used in HT-FEM, as the fundamental solutions contain usually one term only, rather than a series containing infinitely many terms. Further, the fundamental solutions of a problem are, in general, easier to derive than the T-complete functions of that problem. Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show good numerical accuracy and remarkable insensitivity to mesh distortion.
文摘A variational principle of hybrid FEM is proposed to solve the flow in a visco-elaslic pipe. As an example, the influence of an axisymmetrical stenosis on an artery vibrating flow with a single frequency is calculated.
文摘This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.
基金supported by the National Nature Science Foundation of China(Nos.41830107 and 41574120)Doctoral Student Innovation Program(No.2016zzts086)
文摘We have developed a hybrid solver that combines the finite-element and integralequation method for 3D CSEM modeling based on unstructured meshes. To avoid the source singularity, the secondary field is used in the modeling framework. The primary electromagnetic field from an electric dipole source in a layered medium is calculated based on the magnetic vector potential method. The inhomogeneities of the computational region are discretized by a vector-based finite-element mesh with boundaries at finite distance from the inhomogeneities by using the dyadic Green's function, reducing the truncation boundary effect and the solution region. The electric and magnetic Green's function is used in data postprocessing to reduce the numerical errors owing to inaccurate gradients because of unstructured meshes; thus, the electromagnetic field is more accurately calculated. Finally, the proposed algorithm is applied to a block and a disc model, and we assess the topography effect on the field components.
文摘A series of experiments was carried out so as to elucidate the effect of the phase transformation in the cooling process on welding distortion and residual stress generated by laser beam welding (LBW) and laser-arc hybrid welding (HYBW) on the high strength steel (HT780). Then, the experiments were simulated by 3D thermal elasticplastic analysis with FEM (Finite Element Method) which was performed with using the idealized mechanical properties considering the transformation superplasticity. From the results, the effects of the phase transformation on welding distortion and residual stress generated by LBW and HYBW were elucidated. Furthermore, the generality of the idealization of the mechanical properties was verified.
文摘In this paper, woven fabrics of glass fiber/carbon fiber intra-hybrid in plain structure were used to fabricate fiber reinforced plastic (FRP) composite by hand lay-up method. The investigation on tensile property was carried out on specimens in 7 orientations including 0°/5°/15°/75°/85°/90° in previous works. With the specimen parameters and experimental data, FEM model was built by the software of Marc. By combining the experimental results and finite element analysis, the modulus was simulated and calculated at the first stage. Then interfacial stress of the 0 degree and 90 degree was also calculated. By the initial fracture stress data from experiment as well as the simulation value of interfacial strength of 0 and 90 degree, the initial fracture stress of the off-axial specimens wascalculated and predicted. The result shows that the interfacial strength of the glass fiber bundle is higher than that of the carbon fiber bundle in transverse direction. By using the interfacial strength and according to the Von Mises yielding criterion, the initial fracture stress was predicted, which can be a contribution to the design or predict of the material properties.