期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
用于短文本分类的BLSTM_MLPCNN模型 被引量:11
1
作者 郑诚 洪彤彤 薛满意 《计算机科学》 CSCD 北大核心 2019年第6期206-211,共6页
文本表示和文本特征提取是自然语言处理的基础工作,直接影响文本分类的性能。文中提出了以字符级向量联合词向量作为输入的BLSTM_MLPCNN神经网络模型。该模型首先将卷积神经网络(CNN)作用于字符以获取字符级向量,并将字符级向量联合词... 文本表示和文本特征提取是自然语言处理的基础工作,直接影响文本分类的性能。文中提出了以字符级向量联合词向量作为输入的BLSTM_MLPCNN神经网络模型。该模型首先将卷积神经网络(CNN)作用于字符以获取字符级向量,并将字符级向量联合词向量作为预训练词嵌入向量,也即双向长短时记忆网(BLSTM)模型的输入;然后联合BLSTM模型的前向输出、词嵌入向量、后向输出构成文档特征图;最后利用多层感知器卷积神经网络(MLPCNN)进行特征提取。在相关数据集上的实验结果表明:相比于CNN,RNN以及CNN与RNN的组合模型,BLSTM_MLPCNN模型具有更优的分类性能。 展开更多
关键词 字符级向量 词向量 卷积神经网络(cnn) 双向长短时记忆神经网络(BLSTM) 多层感知器(mlp) 多层感知器卷积网络(mlpcnn)
下载PDF
A Neural Network Approach for Misuse and Anomaly Intrusion Detection 被引量:1
2
作者 YAOYu YUGe GAOFu-xiang 《Wuhan University Journal of Natural Sciences》 CAS 2005年第1期115-118,共4页
An MI.P(Multi-Layer Perception)/Elman neural network is proposed in thispaper, which realizes classification with memory of past events using the real-time classificationof MI.P and the memorial functionality of Elman... An MI.P(Multi-Layer Perception)/Elman neural network is proposed in thispaper, which realizes classification with memory of past events using the real-time classificationof MI.P and the memorial functionality of Elman. The system's sensitivity for the memory of pastevents ean be easily reconfigured without retraining the whole network. This approach can he usedfor both misuse and anomaly detection system. The intrusion detection systems(TDSs) using the hybridMLP/Elman neural network are evaluated by the intrusion detection evaluation data sponsored by U.S.Defense Advanced Research Projects Agency CDARPA) Ihc results of experiment are presented inReceiver Operating Characteristic CROC) curves. Thc capabilites of these IDSs to identify DenyofService(DOS) and probing attacks are enhanced. 展开更多
关键词 intrusion detection system hybrid mlp/Elman neural network memory of pastevents recurrent neural network
下载PDF
面向医学图像分割的CNN与Transformer混合模型
3
作者 王茜 蔡英 +1 位作者 范艳芳 王昀 《北京信息科技大学学报(自然科学版)》 2024年第2期15-20,34,共7页
由于医学图像具有对比度低、目标形态复杂和边缘模糊等特点,现有模型的分割准确度无法满足高精度建模和自动化手术的要求。针对这一情况,结合卷积神经网络(convolutional neural networks, CNN)出色的局部特征提取能力和Transformer长... 由于医学图像具有对比度低、目标形态复杂和边缘模糊等特点,现有模型的分割准确度无法满足高精度建模和自动化手术的要求。针对这一情况,结合卷积神经网络(convolutional neural networks, CNN)出色的局部特征提取能力和Transformer长距离建模的优势,提出了一种基于二者的混合架构分割模型ParaCNNFormer。ParaCNNFormer是一种U型结构分割模型,其编码器与解码器均采用CNN与Swin Transformer并联的混合架构,利用CNN提取局部细节特征,同时利用Swin Transformer建立长距离依赖,有效提高了分割准确度。在CHAOS和DSB18数据集上的对比实验结果表明,骰子系数相较于流行的TransUnet和SwinUnet均有明显提升。 展开更多
关键词 医学图像分割 TRANSFORMER 卷积神经网络 混合架构
下载PDF
基于K-Means聚类的粒子群优化CNN-BiGRU-HAM发动机剩余使用寿命预测方法
4
作者 王晓鹏 王磊 +2 位作者 韩小伟 张鹏超 徐浩然 《机床与液压》 北大核心 2024年第20期239-247,共9页
飞机在多种工况条件下运行时,发动机退化特征复杂性不断增加,导致发动机剩余寿命预测精度低。针对此问题,提出一种基于聚类分析的端到端剩余寿命(RUL)预测方法。采用K-Means聚类方法对发动机的多种工况和运行条件进行分组;再利用卷积神... 飞机在多种工况条件下运行时,发动机退化特征复杂性不断增加,导致发动机剩余寿命预测精度低。针对此问题,提出一种基于聚类分析的端到端剩余寿命(RUL)预测方法。采用K-Means聚类方法对发动机的多种工况和运行条件进行分组;再利用卷积神经网络(CNN)提取反映剩余寿命复杂动态变化的高维特征,将结果输入到双向门控循环单元(BiGRU)中学习特征之间的变化规律,设计并引入了新的混合注意力机制(HAM),充分考虑变量之间的关系,对重要特征信息赋予更大的权重,同时抑制冗余信息的影响;然后进行非线性变换,获得RUL预测结果;最后使用粒子群优化算法对神经网络的超参数进行调优。采用美国航天局NASA研究中心提供的涡轮发动机模拟数据集验证所提网络模型的有效性。结果表明:对于多工况运行条件,所提方法的均方根误差相比于CNN、LSTM、BiLSTM、CNN-LSTM分别降低了49.2%、37.1%、33.6%、24.8%,有效提升了模型的预测精度。 展开更多
关键词 多工况聚类 卷积神经网络(cnn) 双向门控循环神经网络 混合注意力机制(HAM) 粒子群优化算法
下载PDF
基于CNN-BiLSTM混合神经网络的雷达信号调制方式识别 被引量:1
5
作者 房崇鑫 盛震宇 +1 位作者 夏明 周慧成 《无线电工程》 2024年第6期1440-1445,共6页
针对具有时频特性的雷达信号,传统的雷达信号识别方法已经无法满足对信号类型精准识别的需求,因此需要通过采集并分析雷达信号脉内的时频特征实现对目标雷达的具体信息进行有效评估。设计了一种卷积-双向长短时记忆(Convolution-Bidirec... 针对具有时频特性的雷达信号,传统的雷达信号识别方法已经无法满足对信号类型精准识别的需求,因此需要通过采集并分析雷达信号脉内的时频特征实现对目标雷达的具体信息进行有效评估。设计了一种卷积-双向长短时记忆(Convolution-Bidirectional Long Short-Term Memory,CNN-BiLSTM)混合神经网络模型,主要通过BiLSTM的时序记忆特性深度挖掘雷达信号的时域特征,结合权值共享特性和CNN层捕获雷达信号的时频特征,再利用二者信号特征联合完成对雷达信号调制方式的识别。通过对比实验验证,所提方法对若干种雷达信号的识别具有较高的准确度,平均值达到95.349%;优于只使用单一特征的网络和传统算法,具有良好的抗噪声能力。 展开更多
关键词 深度学习 卷积-双向长短时记忆混合神经网络 雷达信号调制识别
下载PDF
基于WT-CNN-LSTM混合神经网络的电力系统负荷预测模型
6
作者 陈亮吉 朱晨君 《新型工业化》 2024年第7期132-141,共10页
随着电力在我国能源占比中的持续提升,电力预测在现代能源管理中具有不可替代的作用。由于电力结构的多元化以及影响因素的复杂化,传统的预测模型在电力负荷预测中存在局限性。本文结合小波变换(WT)与神经网络CNN-LSTM,将WT-CNN-LSTM混... 随着电力在我国能源占比中的持续提升,电力预测在现代能源管理中具有不可替代的作用。由于电力结构的多元化以及影响因素的复杂化,传统的预测模型在电力负荷预测中存在局限性。本文结合小波变换(WT)与神经网络CNN-LSTM,将WT-CNN-LSTM混合神经网络应用于电力系统的负荷预测,并与传统机器学习模型、时间序列预测模型进行对比,结果表明WT-CNN-LSTM神经网络在电力负荷预测上具有更高的准确性,能够为电力系统运行和规划提供参考依据。 展开更多
关键词 电力系统负荷预测 cnn-LSTM混合神经网络 小波变换 大数据
下载PDF
基于混合遗传算法优化的MLP神经网络的调制方式识别 被引量:7
7
作者 刘澍 王宏远 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2008年第1期104-108,共5页
提出了一种基于遗传算法与多层感知神经网络的调制识别方法,运用改进遗传算法优化的多层感知神经网络分类器对各种调制信号的特征矢量进行分类识别.利用遗传算法的高效全局特性,克服了传统BP算法易于陷入局部最优解的缺点,同时在遗传算... 提出了一种基于遗传算法与多层感知神经网络的调制识别方法,运用改进遗传算法优化的多层感知神经网络分类器对各种调制信号的特征矢量进行分类识别.利用遗传算法的高效全局特性,克服了传统BP算法易于陷入局部最优解的缺点,同时在遗传算法基础上增加梯度下降算子,加快了收敛速度,使得分类器的识别率、收敛速度和鲁棒性得到明显改善,仿真实验的结果证明了此方法的有效性和可行性. 展开更多
关键词 混合遗传算法 mlp神经网络 特征矢量 调制识别
下载PDF
基于CNN-BIGRU-ATTENTION的短期电力负荷预测 被引量:15
8
作者 方娜 余俊杰 +1 位作者 李俊晓 万畅 《计算机仿真》 北大核心 2022年第2期40-44,82,共6页
电价的实时波动,会对负荷预测精度产生一定影响,增加预测的复杂性。针对这一问题,本文构建基于注意力(ATTENTION)机制的卷积神经网络(CNN)和双向门控循环单元(BIGRU)混合模型对短期电力负荷进行预测。首先用CNN对负荷及电价数据特征进... 电价的实时波动,会对负荷预测精度产生一定影响,增加预测的复杂性。针对这一问题,本文构建基于注意力(ATTENTION)机制的卷积神经网络(CNN)和双向门控循环单元(BIGRU)混合模型对短期电力负荷进行预测。首先用CNN对负荷及电价数据特征进行抽取;其次,利用BIGRU对潜藏的时序规律进行提取;最后结合ATTENTION机制,突出关键特征。仿真结果表明,与BP网络、CNN-GRU、CNN-BIGRU和CNN-GRU-ATTENTION混合模型的预测结果相比,上述模型具有更高的预测精度,是一种有效的短期负荷预测方法。 展开更多
关键词 短期负荷预测 注意力机制 卷积神经网络 双向门控循环单元 混合模型
下载PDF
基于TimeGAN-CNN-LSTM模型的河流水质预测研究 被引量:7
9
作者 张丽娜 陈会娟 余昭旭 《自动化仪表》 CAS 2022年第8期11-15,共5页
为精确预测河流水质中的铵离子(NH_(4)^(+))浓度,针对某公开水质数据进行了研究,提出了一种基于时间序列对抗生成网络(TimeGAN)、卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型。使用TimeGAN对河流水质历史数据进行数据增强,生成... 为精确预测河流水质中的铵离子(NH_(4)^(+))浓度,针对某公开水质数据进行了研究,提出了一种基于时间序列对抗生成网络(TimeGAN)、卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型。使用TimeGAN对河流水质历史数据进行数据增强,生成合成时间序列数据;采用CNN对输入的数据进行特征提取,并通过全连接层将数据输入到LSTM中得到预测值,从而建立TimeGANCNN-LSTM河流水质预测模型。试验结果表明,模型预测效果良好,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R^(2))分别为0.07、0.08和0.97,比CNN-LSTM模型分别提高了45.45%、47.06%和19.75%,比LSTM模型分别提高了50%、50%和21.25%。TimeGAN-CNN-LSTM既解决了训练模型时数据不充分的问题,又能够充分提取水质数据在时间和空间上的特征,具有较高的应用价值。 展开更多
关键词 水质预测 混合模型 时间序列对抗生成网络 卷积神经网络 长短期记忆网络 时间序列数据
下载PDF
基于注意力机制的混合CNN-BiLSTM低轨卫星信道预测算法 被引量:5
10
作者 唐一强 杨霄鹏 朱圣铭 《系统工程与电子技术》 EI CSCD 北大核心 2022年第12期3863-3870,共8页
针对低轨道卫星信道质量变化迅速、信道参数“过时”的问题,提出了一种基于注意力机制的卷积神经和双向长短时记忆神经网络(attention-convolutional neural network and bi-directional long-short term memory neural network,AT-CNN-... 针对低轨道卫星信道质量变化迅速、信道参数“过时”的问题,提出了一种基于注意力机制的卷积神经和双向长短时记忆神经网络(attention-convolutional neural network and bi-directional long-short term memory neural network,AT-CNN-BiLSTM)融合的信道预测方法。该方法由信号预处理、网络训练和信号预测3部分组成。首先在高斯白噪声条件下模拟室外卫星信号,得到卫星信号的训练集和测试集;然后将训练集输入构建的训练网络进行特征提取;最后将测试数据输入网络进行预测分析。仿真结果表明,在与其他4种人工智能方法的对比中,所提出的混合神经网络能够在较快的收敛速度下达到较高的准确率(91.8%),有效地缓解了低轨道卫星信道参数“过时”的现状,对提升卫星通信质量和节省卫星信道资源有良好的改善作用。 展开更多
关键词 低轨卫星 信道预测 注意力机制 卷积神经和双向长短时记忆混合神经网络
下载PDF
基于CNN-LSTM的脑电情感四分类研究 被引量:3
11
作者 张英杰 谢云 《科学技术与工程》 北大核心 2023年第24期10437-10444,共8页
为深入研究脑电信号(electroencephalogram,EEG)时空特征之间的关联,解决因手动提取特征导致的脑电情感识别准确率较低问题。将卷积神经网络(convolutional neural network,CNN)和长短时记忆网络(long short-term memory,LSTM)相结合,... 为深入研究脑电信号(electroencephalogram,EEG)时空特征之间的关联,解决因手动提取特征导致的脑电情感识别准确率较低问题。将卷积神经网络(convolutional neural network,CNN)和长短时记忆网络(long short-term memory,LSTM)相结合,构造出了CNN-LSTM模型。首先,提取了5个频段的5个不同特征:功率谱密度(PSD)、差分熵(DE)、差分不对称(DASM)、理性不对称(RASM)和差分熵差分(DCAU)。其次,将特征输入CNN-LSTM模型,在DEAP数据集中的效价和唤醒两种情感维度上展开四分类实验。最后,将堆栈自编密码器(SAE),卷积稀疏自编码器(CSAE),深度置信网络(depth confidence network,DBN)分别与LSTM组合,构造SAE-LSTM,CSAE-LSTM,DBN-LSTM3种混合模型同CNN-LSTM进行分类准确率比较。实验结果表明:DE特征的分类识别效果在5种特征中占最优,β和γ频段上所有特征的识别准确率远高于其他频段,尤其是γ频段。CNN-LSTM模型获得了最高的平均分类准确率92.48%,充分证明了CNN-LSTM模型的有效性。 展开更多
关键词 脑电信号(EEG) 情感识别 卷积神经网络(cnn) 长短时记忆网络(LSTM) 混合神经网络 深度学习
下载PDF
运用CNN-LSTM混合模型的短文本分类 被引量:3
12
作者 马正奇 呼嘉明 +1 位作者 龙铭 陈新 《空军预警学院学报》 2019年第4期295-297,302,共4页
针对分类短文本时卷积神经网络(CNN)只提取局部特征和长短时记忆网络(LSTM)学习计算量大、处理时间长且随着短文本文字量增加与上下文的联系会减弱的问题,给出了基于CNN-LSTM混合模型算法.该算法融合CNN对短文本的特征提取能力,降低了... 针对分类短文本时卷积神经网络(CNN)只提取局部特征和长短时记忆网络(LSTM)学习计算量大、处理时间长且随着短文本文字量增加与上下文的联系会减弱的问题,给出了基于CNN-LSTM混合模型算法.该算法融合CNN对短文本的特征提取能力,降低了文本数据量;利用LSTM的记忆能力,充分学习短文本的全局特征,进而对短文本进行更加有效地分类.实验结果表明,CNN-LSTM混合模型对短文本的分类效果远远好于CNN模型和LSTM模型. 展开更多
关键词 短文本 卷积神经网络 长短时记忆网络 cnn-LSTM混合模型
下载PDF
基于CNN-LSTM混合神经网络模型的短期负荷预测方法 被引量:345
13
作者 陆继翔 张琪培 +3 位作者 杨志宏 涂孟夫 陆进军 彭晖 《电力系统自动化》 EI CSCD 北大核心 2019年第8期131-137,共7页
为了更好地挖掘海量数据中蕴含的有效信息,提高短期负荷预测精度,针对负荷数据时序性和非线性的特点,提出了一种基于卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型短期负荷预测方法,将海量的历史负荷数据、气象数据、日期信息以... 为了更好地挖掘海量数据中蕴含的有效信息,提高短期负荷预测精度,针对负荷数据时序性和非线性的特点,提出了一种基于卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型短期负荷预测方法,将海量的历史负荷数据、气象数据、日期信息以及峰谷电价数据按时间滑动窗口构造连续特征图作为输入,先采用CNN提取特征向量,将特征向量以时序序列方式构造并作为LSTM网络输入数据,再采用LSTM网络进行短期负荷预测。使用所提方法对江苏省某地区电力负荷数据进行预测实验,实验结果表明,文中所提出的预测方法比传统负荷预测方法、随机森林模型负荷预测模型方法和标准LSTM网络负荷预测方法具有更高的预测精度。 展开更多
关键词 短期负荷预测 卷积神经网络 长短期记忆网络 卷积神经网络—长短期记忆网络混合模型
下载PDF
基于CNN-LSTM混合神经网络模型的NO_(x)排放预测 被引量:29
14
作者 邢红涛 郭江龙 +2 位作者 刘书安 阎彬 杨一盈 《电子测量技术》 北大核心 2022年第2期98-103,共6页
为了充分挖掘电站锅炉NO_(x)排放数据中时序性特征联系,提高NO_(x)排放预测精度,提出一种基于卷积神经网络(CNN)和长短期记忆网络(LSTM)的NO_(x)排放预测方法。以某300 MW电站锅炉历史数据为样本,采用K-means聚类方法对NO_(x)排放训练... 为了充分挖掘电站锅炉NO_(x)排放数据中时序性特征联系,提高NO_(x)排放预测精度,提出一种基于卷积神经网络(CNN)和长短期记忆网络(LSTM)的NO_(x)排放预测方法。以某300 MW电站锅炉历史数据为样本,采用K-means聚类方法对NO_(x)排放训练样本集进行分组,再基于CNN网络的卷积层和池化层提取NO_(x)排放变量的高维映射关系,构造高维时序特征向量,将抽象化的特征集输入到LSTM网络,通过训练LSTM网络参数建立基于CNN-LSTM的NO_(x)排放预测模型。通过某电站锅炉实际数据验证,所提预测模型对训练和测试样本的平均相对百分比误差分别为1.76%和3.85%,远低于其他模型。结果表明所提模型在预测精度和泛化能力方面具有显著优势。 展开更多
关键词 NO_(x)排放 卷积神经网络 长短期记忆网络 NO_(x)排放聚类 混合神经网络
下载PDF
A Hybrid Features Based Detection Method for Inshore Ship Targets in SAR Imagery 被引量:2
15
作者 Tong ZHENG Peng LEI Jun WANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第1期95-107,共13页
Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,du... Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,due to the high similarity between the man-made targets near shore and inshore ships,the classical methods are unable to achieve effective detection of inshore ships.To mitigate the influence of onshore ship-like objects,this paper proposes an inshore ship detection method in SAR images by using hybrid features.Firstly,the sea-land segmentation is applied in the pre-processing to exclude obvious land regions from SAR images.Then,a CNN model is designed to extract deep features for identifying potential ship targets in both inshore and offshore water.On this basis,the high-energy point number of amplitude spectrum is further introduced as an important and delicate feature to suppress false alarms left.Finally,to verify the effectiveness of the proposed method,numerical and comparative studies are carried out in experiments on Sentinel-1 SAR images. 展开更多
关键词 Convolutional neural network(cnn) Synthetic Aperture Radar(SAR) inshore ship detection hybrid features high-energy point number amplitude spectrum
下载PDF
毫米波MIMO系统中基于CNN的混合波束成形设计
16
作者 黄天赐 杜江 +1 位作者 马腾 刘海波 《传感器与微系统》 CSCD 北大核心 2023年第7期78-82,共5页
混合波束成形是毫米波多输入多输出(MIMO)系统中的关键技术,提出了一种基于深度学习的方法来克服复杂性问题且提升系统性能。首先,利用无约束波束成形的相互正交性,对基带波束成形加以正交性的约束后确定等效波束成形器从而通过相位提... 混合波束成形是毫米波多输入多输出(MIMO)系统中的关键技术,提出了一种基于深度学习的方法来克服复杂性问题且提升系统性能。首先,利用无约束波束成形的相互正交性,对基带波束成形加以正交性的约束后确定等效波束成形器从而通过相位提取来获得模拟波束成形器的相位,将获得的输出插入到基于卷积神经网络(CNN)的混合波束形成(HBCN),HBCN使用的可行集中;其次,HBCN是将天线选择和混合波束成形器设计作为CNN的分类、预测问题,在天线选择上将信道矩阵作为输入,找出最优子阵列,合成的子阵信道矩阵再反馈给CNN来获得模拟和基带波束成形。最后,仿真结果显示,对比传统算法,能够得到更好的频谱效率和更低的复杂度。 展开更多
关键词 毫米波多输入多输出 天线选择 混合波束成形 卷积神经网络 频谱效率
下载PDF
基于CHF-CNN的语音分离
17
作者 王巾侠 李少波 +1 位作者 江厚民 边霄翔 《计算机仿真》 北大核心 2019年第5期279-283,共5页
深度神经网络已经在语音分离方面取得很好的表现,但是卷积神经网络获取的语音信息会更全面。经常用来评估预测目标好坏的分类准确率和命中率-错误率(HIT-FA)之间存在不平衡现象。为了解决这种不平衡,对卷积神经网络的损失函数进行了改进... 深度神经网络已经在语音分离方面取得很好的表现,但是卷积神经网络获取的语音信息会更全面。经常用来评估预测目标好坏的分类准确率和命中率-错误率(HIT-FA)之间存在不平衡现象。为了解决这种不平衡,对卷积神经网络的损失函数进行了改进,提出使用二元交叉熵及命中率-错误率混合(CHF)损失函数,构成CHF-CNN模型。实验证明,使用CHF-CNN模型可以同时提高分类准确率和命中率-错误率(HIT-FA)来避免不平衡现象。此外,还验证了不同信噪比下的语音分离成果,发现当信噪比匹配时效果比不匹配时明显好,同时随着信噪比的增大效果会越来越好。 展开更多
关键词 语音分离 卷积神经网络 二元交叉熵及命中率-错误率混合
下载PDF
基于HOG-CNN的高相似度叶片图像识别方法 被引量:2
18
作者 雷继呈 杨晓滨 +2 位作者 罗道兴 上官毅祥 曾森灵 《计算机时代》 2019年第9期53-56,共4页
依赖特征工程的传统图像识别技术对高度相似叶片图像识别困难,对此提出一种融合方向梯度直方图(HOG)与卷积神经网络(CNN)的图像识别方法。首先由HOG算子提取叶片图像的局部纹理特征,然后将特征向量导入卷积神经网络进行训练、测试和输... 依赖特征工程的传统图像识别技术对高度相似叶片图像识别困难,对此提出一种融合方向梯度直方图(HOG)与卷积神经网络(CNN)的图像识别方法。首先由HOG算子提取叶片图像的局部纹理特征,然后将特征向量导入卷积神经网络进行训练、测试和输出分类结果。通过组合对比试验结果表明,该方法能够有效提高数据的鲁棒性,提高叶片图像的平均正确识别率,比多层感知器(MLP)和支持向量机(SVM)分类器的准确率提高了12%左右,平均准确率达到85%。 展开更多
关键词 方向梯度直方图(HOG) 卷积神经网络(cnn) 多层感知器(mlp) 支持向量机(SVM) 图像识别
下载PDF
基于相似日和CNN-LSTM的短期负荷预测 被引量:2
19
作者 童占北 钟建伟 +2 位作者 李祯维 吴建军 李家俊 《电工电气》 2022年第8期17-22,共6页
为充分发掘历史信息,解决气象数据不足影响预测精度的问题,采用灰色关联分析(GRA)选取天气相似日和CNN-LSTM混合神经网络的方法来预测电力负荷。利用GRA计算每日各气象因素与日总负荷的灰色关联度,再计算各日与典型日的相同气象因素之... 为充分发掘历史信息,解决气象数据不足影响预测精度的问题,采用灰色关联分析(GRA)选取天气相似日和CNN-LSTM混合神经网络的方法来预测电力负荷。利用GRA计算每日各气象因素与日总负荷的灰色关联度,再计算各日与典型日的相同气象因素之间的欧氏距离,将各气象因素的欧氏距离分别乘以对应因素的关联度,并将同一天的结果累加,得到一个综合得分。选取待预测日之前分数最低的5天作为相似日,将相似日各时刻的负荷数据输入CNN-LSTM网络中,预测出待预测日的负荷,通过与其他模型对比,验证了该方法的有效性。 展开更多
关键词 灰色关联分析 相似日 cnn-LSTM混合神经网络 短期负荷预测
下载PDF
CNN and MLP neural network ensembles for packet classification and adversary defense
20
作者 Bruce Hartpence Andres Kwasinski 《Intelligent and Converged Networks》 2021年第1期66-82,共17页
Machine learning techniques such as artificial neural networks are seeing increased use in the examination of communication network research questions.Central to many of these research questions is the need to classif... Machine learning techniques such as artificial neural networks are seeing increased use in the examination of communication network research questions.Central to many of these research questions is the need to classify packets and improve visibility.Multi-Layer Perceptron(MLP)neural networks and Convolutional Neural Networks(CNNs)have been used to successfully identify individual packets.However,some datasets create instability in neural network models.Machine learning can also be subject to data injection and misclassification problems.In addition,when attempting to address complex communication network challenges,extremely high classification accuracy is required.Neural network ensembles can work towards minimizing or even eliminating some of these problems by comparing results from multiple models.After ensembles tuning,training time can be reduced,and a viable and effective architecture can be obtained.Because of their effectiveness,ensembles can be utilized to defend against data poisoning attacks attempting to create classification errors.In this work,ensemble tuning and several voting strategies are explored that consistently result in classification accuracy above 99%.In addition,ensembles are shown to be effective against these types of attack by maintaining accuracy above 98%. 展开更多
关键词 Convolutional neural network(cnn) Multi-Layer Perception(mlp) ENSEMBLE CLASSIFICATION adversary
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部