Flexoelectric-induced voltage shift in a weak anchoring hybrid aligned nematic fiquid crystai cell is investigated theoretically. Based on the elastic theory of liquid crystal and the variation method, the equations f...Flexoelectric-induced voltage shift in a weak anchoring hybrid aligned nematic fiquid crystai cell is investigated theoretically. Based on the elastic theory of liquid crystal and the variation method, the equations for the bulk and the boundary of the cell are derived. By computer simulation, the dependence of the shift voltage on the sum of the ttexoelectric coefficients and the anchoring energy strength is obtained. As a result, a novel method to determine the sum of the flexoelectric coefficients by measuring the shift voltage is put forward.展开更多
A detailed theoretical analysis of determining the sum of flexoelectric coefficients in nematic liquid crystals using the capacitance method is given. In the strong anchoring parallel aligned nematic (PAN) and hybri...A detailed theoretical analysis of determining the sum of flexoelectric coefficients in nematic liquid crystals using the capacitance method is given. In the strong anchoring parallel aligned nematic (PAN) and hybrid aligned nematic (HAN) cells, the dependences of the capacitance on the sum of flexoelectric coefficients and the applied voltage are obtained by numerical simulations, and the distributions of the director and the electric potential for different applied voltages and flexoelectric coefficients are also given. Based on this theoretical analysis, we propose an experimental design for measuring the capacitance of a liquid crystal cell using the improved precision LCR meter E4980A (Agilent). Through comparing the experimental data with the simulated results, the sum of flexoeletric coefficients can be determined.展开更多
The physical effects on surface and flexoelectric polarization in a weak anchoring nematic liquid crystal cell are investigated systematically. We derive the analytic expressions of two effective anchoring energies fo...The physical effects on surface and flexoelectric polarization in a weak anchoring nematic liquid crystal cell are investigated systematically. We derive the analytic expressions of two effective anchoring energies for lower and upper substrates respectively as well as their effective anchoring strengths and corresponding tilt angles of effective easy direction.All of these quantities are relevant to the magnitudes of both two polarizations and the applied voltage U. Based on these expressions, the variations of effective anchoring strength and the tilt angle with the applied voltage are calculated for the fixed values of two polarizations. For an original weak anchoring hybrid aligned nematic cell, it may be equivalent to a planar cell for a small value of U and has a threshold voltage. The variation of reduced threshold voltage with reduced surface polarization strength is also calculated. The role of surface polarization is important without the adsorptive ions considered.展开更多
基金Supported by the Natural Science Foundation of Hebei Province under Grant No. A2010000004the National Natural Science Foundation of China under Grant No. 60736042+1 种基金the Key Subject Construction Project of Hebei Province Universitythe Research Project of Hebei Education Department under Grant No. Z2011133
文摘Flexoelectric-induced voltage shift in a weak anchoring hybrid aligned nematic fiquid crystai cell is investigated theoretically. Based on the elastic theory of liquid crystal and the variation method, the equations for the bulk and the boundary of the cell are derived. By computer simulation, the dependence of the shift voltage on the sum of the ttexoelectric coefficients and the anchoring energy strength is obtained. As a result, a novel method to determine the sum of the flexoelectric coefficients by measuring the shift voltage is put forward.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274088,11374087,and 11304074)the Natural Science Foundation of Hebei Province,China(Grant No.A2014202123)+2 种基金the Research Project of Hebei Education Department,China(Grant Nos.Z2012061 and QN2014130)the Science and Technology Plan Project of Hebei Province,China(Grant No.134576260)the Key Subject Construction Project of Hebei Province University,China
文摘A detailed theoretical analysis of determining the sum of flexoelectric coefficients in nematic liquid crystals using the capacitance method is given. In the strong anchoring parallel aligned nematic (PAN) and hybrid aligned nematic (HAN) cells, the dependences of the capacitance on the sum of flexoelectric coefficients and the applied voltage are obtained by numerical simulations, and the distributions of the director and the electric potential for different applied voltages and flexoelectric coefficients are also given. Based on this theoretical analysis, we propose an experimental design for measuring the capacitance of a liquid crystal cell using the improved precision LCR meter E4980A (Agilent). Through comparing the experimental data with the simulated results, the sum of flexoeletric coefficients can be determined.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274088,11374087,and11304074)the Natural Science Foundation of Hebei Province,China(Grant No.A2014202123)+1 种基金the Research Project of Hebei Provincial Education Department,China(Grant No.QN2014130)the Key Subject Construction Project of Hebei Provincial University,China
文摘The physical effects on surface and flexoelectric polarization in a weak anchoring nematic liquid crystal cell are investigated systematically. We derive the analytic expressions of two effective anchoring energies for lower and upper substrates respectively as well as their effective anchoring strengths and corresponding tilt angles of effective easy direction.All of these quantities are relevant to the magnitudes of both two polarizations and the applied voltage U. Based on these expressions, the variations of effective anchoring strength and the tilt angle with the applied voltage are calculated for the fixed values of two polarizations. For an original weak anchoring hybrid aligned nematic cell, it may be equivalent to a planar cell for a small value of U and has a threshold voltage. The variation of reduced threshold voltage with reduced surface polarization strength is also calculated. The role of surface polarization is important without the adsorptive ions considered.