In this paper, a new method has been introduced to find the most vulnerable lines in the system dynamically in an interconnected power system to help with the security and load flow analysis in these networks. Using t...In this paper, a new method has been introduced to find the most vulnerable lines in the system dynamically in an interconnected power system to help with the security and load flow analysis in these networks. Using the localization of power networks, the power grid can be divided into several divisions of sub-networks in which, the connection of the elements is stronger than the elements outside of that division. By using our proposed method, the probable important lines in the network can be identified to do the placement of the protection apparatus and planning for the extra extensions in the system. In this paper, we have studied the pathfinding strategies in most vulnerable line detection in a partitioned network. The method has been tested on IEEE39-bus system which is partitioned using hierarchical spectral clustering to show the feasibility of the proposed method.展开更多
In this paper,we propose a hybrid forecasting model(HFM)for the short-term electric load forecasting using artificial neural network(ANN),discrete Fourier transformation(DFT)and principal component analysis(PCA)techni...In this paper,we propose a hybrid forecasting model(HFM)for the short-term electric load forecasting using artificial neural network(ANN),discrete Fourier transformation(DFT)and principal component analysis(PCA)techniques in order to attain higher prediction accuracy.Firstly,we estimate Fourier coefficients by the DFT for predicting the next-day load curve with an ANN and obtain approximate load curves by applying the inverse discrete Fourier transformation.Approximate curves,together with other input variables,are given to the ANN to predict the next-day hourly load curves.Furthermore,we predict PCA scores to obtain approximate load curves in the first step,which are then given to the ANN again in the second step.Both DFT and PCA models use input variables such as calendrical and meteorological data as well as past electric loads.Applying those models for forecasting hourly electric load in the metropolitan area of Japan for January and May in 2018,we train our models using historical data since January 2008.The forecast results show that the HFM consisting of“ANN with DFT”and“ANN with PCA”predicts next-day hourly loads more accurately than the conventional three-layered ANN approach.Their corresponding mean average absolute errors show 2.7%for ANN with DFT,2.6%for ANN with PCA and 3.0%for the conventional ANN approach.We also find that in May,when electric demand is smaller with smaller fluctuations,forecasting errors are much smaller than January for all the models.Thus,we can conclude that the HFM would contribute to attaining significantly higher forecasting accuracy.展开更多
Nonlinear principal component analysis(NLPCA)fault detection method achieves good detection results especially in a nonlinear process.Signed directed graph(SDG)model is based on deep-going information,which excels in ...Nonlinear principal component analysis(NLPCA)fault detection method achieves good detection results especially in a nonlinear process.Signed directed graph(SDG)model is based on deep-going information,which excels in fault interpretation.In this work,an NLPCA-SDG fault diagnosis method was proposed.SDG model was used to interpret the residual contributions produced by NLPCA.This method could overcome the shortcomings of traditional principal component analysis(PCA)method in fault detection of a nonlinear process and the shortcomings of traditional SDG method in single variable statistics in discriminating node conditions and threshold values.The application to a distillation unit of a petrochemical plant illustrated its validity in nonlinear process fault diagnosis.展开更多
图划分是大图数据并行计算的基础,目前主要采用分布式算法实现大图划分.非易失存储器(Non-Volatile Memory,NVM)速度接近动态随机存储器(Dynamic Random Access Memory,DRAM),且具有低功耗、高密度、低时延等优点,本文针对分布式图划分...图划分是大图数据并行计算的基础,目前主要采用分布式算法实现大图划分.非易失存储器(Non-Volatile Memory,NVM)速度接近动态随机存储器(Dynamic Random Access Memory,DRAM),且具有低功耗、高密度、低时延等优点,本文针对分布式图划分算法难以分析和调试等问题,设计了基于混合内存的单机图划分算法框架.作者提出了基于邻边结构的图划分结果动态缓存管理策略(AeFdy),以提高缓存区邻居节点的搜索效率.在17种真实应用数据上的实验结果表明,采用新方法的平均图划分速度是基于邻点结构算法的4.9倍.本文还针对NVM寿命有限的问题,设计了基于内存页读写特征的迁移算法,实现了NVM写操作受限条件下的迁移优化方案.相对于Linux Swap、M-CLOCK、Dr.Swap混合内存管理策略,使用AeFdy策略的性能分别提升了128.5%、87.4%与50.4%.仿真实验结果表明,本文设计的混合内存管理方法实现了NVM+DRAM高效协同.展开更多
文摘In this paper, a new method has been introduced to find the most vulnerable lines in the system dynamically in an interconnected power system to help with the security and load flow analysis in these networks. Using the localization of power networks, the power grid can be divided into several divisions of sub-networks in which, the connection of the elements is stronger than the elements outside of that division. By using our proposed method, the probable important lines in the network can be identified to do the placement of the protection apparatus and planning for the extra extensions in the system. In this paper, we have studied the pathfinding strategies in most vulnerable line detection in a partitioned network. The method has been tested on IEEE39-bus system which is partitioned using hierarchical spectral clustering to show the feasibility of the proposed method.
文摘In this paper,we propose a hybrid forecasting model(HFM)for the short-term electric load forecasting using artificial neural network(ANN),discrete Fourier transformation(DFT)and principal component analysis(PCA)techniques in order to attain higher prediction accuracy.Firstly,we estimate Fourier coefficients by the DFT for predicting the next-day load curve with an ANN and obtain approximate load curves by applying the inverse discrete Fourier transformation.Approximate curves,together with other input variables,are given to the ANN to predict the next-day hourly load curves.Furthermore,we predict PCA scores to obtain approximate load curves in the first step,which are then given to the ANN again in the second step.Both DFT and PCA models use input variables such as calendrical and meteorological data as well as past electric loads.Applying those models for forecasting hourly electric load in the metropolitan area of Japan for January and May in 2018,we train our models using historical data since January 2008.The forecast results show that the HFM consisting of“ANN with DFT”and“ANN with PCA”predicts next-day hourly loads more accurately than the conventional three-layered ANN approach.Their corresponding mean average absolute errors show 2.7%for ANN with DFT,2.6%for ANN with PCA and 3.0%for the conventional ANN approach.We also find that in May,when electric demand is smaller with smaller fluctuations,forecasting errors are much smaller than January for all the models.Thus,we can conclude that the HFM would contribute to attaining significantly higher forecasting accuracy.
文摘Nonlinear principal component analysis(NLPCA)fault detection method achieves good detection results especially in a nonlinear process.Signed directed graph(SDG)model is based on deep-going information,which excels in fault interpretation.In this work,an NLPCA-SDG fault diagnosis method was proposed.SDG model was used to interpret the residual contributions produced by NLPCA.This method could overcome the shortcomings of traditional principal component analysis(PCA)method in fault detection of a nonlinear process and the shortcomings of traditional SDG method in single variable statistics in discriminating node conditions and threshold values.The application to a distillation unit of a petrochemical plant illustrated its validity in nonlinear process fault diagnosis.