Organic matters(OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the...Organic matters(OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol(EtO H)-mediated As(Ⅲ) adsorption onto Zn-loaded pinecone(PC) biochar through batch experiments conducted under Box–Behnken design. The effect of EtO H on As(Ⅲ) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtO H and pH on As(Ⅲ) adsorption,whereas neural network revealed the stronger influence of Et OH(64.5%) followed by pH(20.75%)and As(Ⅲ) concentration(14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that Et OH enhances As(Ⅲ) adsorption over a pH range of2 to 7, possibly due to facilitation of ligand–metal(Zn) binding complexation mechanism.Eventually, hybrid response surface model–genetic algorithm(RSM–GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(Ⅲ)(10.47 μg/g) is facilitated at 30.22 mg C/L of Et OH with initial As(Ⅲ) concentration of 196.77 μg/L at pH 5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(Ⅲ) species in the presence of OM.展开更多
Recently, many researchers have used nature inspired metaheuristicalgorithms due to their ability to perform optimally on complex problems. Tosolve problems in a simple way, in the recent era bat algorithm has becomef...Recently, many researchers have used nature inspired metaheuristicalgorithms due to their ability to perform optimally on complex problems. Tosolve problems in a simple way, in the recent era bat algorithm has becomefamous due to its high tendency towards convergence to the global optimummost of the time. But, still the standard bat with random walk has a problemof getting stuck in local minima. In order to solve this problem, this researchproposed bat algorithm with levy flight random walk. Then, the proposedBat with Levy flight algorithm is further hybridized with three differentvariants of ANN. The proposed BatLFBP is applied to the problem ofinsulin DNA sequence classification of healthy homosapien. For classificationperformance, the proposed models such as Bat levy flight Artificial NeuralNetwork (BatLFANN) and Bat levy Flight Back Propagation (BatLFBP) arecompared with the other state-of-the-art algorithms like Bat Artificial NeuralNetwork (BatANN), Bat back propagation (BatBP), Bat Gaussian distribution Artificial Neural Network (BatGDANN). And Bat Gaussian distributionback propagation (BatGDBP), in-terms of means squared error (MSE) andaccuracy. From the perspective of simulations results, it is show that theproposed BatLFANN achieved 99.88153% accuracy with MSE of 0.001185,and BatLFBP achieved 99.834185 accuracy with MSE of 0.001658 on WL5.While on WL10 the proposed BatLFANN achieved 99.89899% accuracy withMSE of 0.00101, and BatLFBP achieved 99.84473% accuracy with MSE of0.004553. Similarly, on WL15 the proposed BatLFANN achieved 99.82853%accuracy with MSE of 0.001715, and BatLFBP achieved 99.3262% accuracywith MSE of 0.006738 which achieve better accuracy as compared to the otherhybrid models.展开更多
Individuals with cerebral palsy and muscular dystrophy often lack fine motor control of their fingers which makes it difficult to control traditional powered wheelchairs using a joystick.Studies have shown the use of ...Individuals with cerebral palsy and muscular dystrophy often lack fine motor control of their fingers which makes it difficult to control traditional powered wheelchairs using a joystick.Studies have shown the use of surface electromyography to steer powered wheelchairs or automobiles either through simulations or gaming controllers.However,these studies significantly lack issues with real world scenarios such as user’s safety,real-time control,and efficiency of the controller mechanism.The purpose of this study was to design,evaluate,and implement a hybrid human–machine interface system for a powered wheelchair that can detect human intent based on artificial neural network trained hand gesture recognition and navigate a powered wheelchair without colliding with objects around the path.Scaled Conjugate Gradient(SCG),Bayesian Regularization(BR),and Levenberg Marquart(LM)supervised artificial neural networks were trained in offline testing on eight participants without disability followed by online testing using the classifier with highest accuracy.Bayesian Regularization architecture showed highest accuracy at 98.4%across all participants and hidden layers.All participants successfully completed the path in an average of 5 min and 50 s,touching an average of 22.1%of the obstacles.The proposed hybrid system can be implemented to assist people with neuromuscular disabilities in near future.展开更多
基金supported by the research funds from the University of Ulsan in South Korea during the financial year 2012–2013
文摘Organic matters(OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol(EtO H)-mediated As(Ⅲ) adsorption onto Zn-loaded pinecone(PC) biochar through batch experiments conducted under Box–Behnken design. The effect of EtO H on As(Ⅲ) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtO H and pH on As(Ⅲ) adsorption,whereas neural network revealed the stronger influence of Et OH(64.5%) followed by pH(20.75%)and As(Ⅲ) concentration(14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that Et OH enhances As(Ⅲ) adsorption over a pH range of2 to 7, possibly due to facilitation of ligand–metal(Zn) binding complexation mechanism.Eventually, hybrid response surface model–genetic algorithm(RSM–GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(Ⅲ)(10.47 μg/g) is facilitated at 30.22 mg C/L of Et OH with initial As(Ⅲ) concentration of 196.77 μg/L at pH 5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(Ⅲ) species in the presence of OM.
基金This research is supported by Tier-1 Research Grant, vote no. H938 by ResearchManagement Office (RMC), Universiti Tun Hussein Onn Malaysia and Ministry of Higher Education,Malaysia.
文摘Recently, many researchers have used nature inspired metaheuristicalgorithms due to their ability to perform optimally on complex problems. Tosolve problems in a simple way, in the recent era bat algorithm has becomefamous due to its high tendency towards convergence to the global optimummost of the time. But, still the standard bat with random walk has a problemof getting stuck in local minima. In order to solve this problem, this researchproposed bat algorithm with levy flight random walk. Then, the proposedBat with Levy flight algorithm is further hybridized with three differentvariants of ANN. The proposed BatLFBP is applied to the problem ofinsulin DNA sequence classification of healthy homosapien. For classificationperformance, the proposed models such as Bat levy flight Artificial NeuralNetwork (BatLFANN) and Bat levy Flight Back Propagation (BatLFBP) arecompared with the other state-of-the-art algorithms like Bat Artificial NeuralNetwork (BatANN), Bat back propagation (BatBP), Bat Gaussian distribution Artificial Neural Network (BatGDANN). And Bat Gaussian distributionback propagation (BatGDBP), in-terms of means squared error (MSE) andaccuracy. From the perspective of simulations results, it is show that theproposed BatLFANN achieved 99.88153% accuracy with MSE of 0.001185,and BatLFBP achieved 99.834185 accuracy with MSE of 0.001658 on WL5.While on WL10 the proposed BatLFANN achieved 99.89899% accuracy withMSE of 0.00101, and BatLFBP achieved 99.84473% accuracy with MSE of0.004553. Similarly, on WL15 the proposed BatLFANN achieved 99.82853%accuracy with MSE of 0.001715, and BatLFBP achieved 99.3262% accuracywith MSE of 0.006738 which achieve better accuracy as compared to the otherhybrid models.
文摘Individuals with cerebral palsy and muscular dystrophy often lack fine motor control of their fingers which makes it difficult to control traditional powered wheelchairs using a joystick.Studies have shown the use of surface electromyography to steer powered wheelchairs or automobiles either through simulations or gaming controllers.However,these studies significantly lack issues with real world scenarios such as user’s safety,real-time control,and efficiency of the controller mechanism.The purpose of this study was to design,evaluate,and implement a hybrid human–machine interface system for a powered wheelchair that can detect human intent based on artificial neural network trained hand gesture recognition and navigate a powered wheelchair without colliding with objects around the path.Scaled Conjugate Gradient(SCG),Bayesian Regularization(BR),and Levenberg Marquart(LM)supervised artificial neural networks were trained in offline testing on eight participants without disability followed by online testing using the classifier with highest accuracy.Bayesian Regularization architecture showed highest accuracy at 98.4%across all participants and hidden layers.All participants successfully completed the path in an average of 5 min and 50 s,touching an average of 22.1%of the obstacles.The proposed hybrid system can be implemented to assist people with neuromuscular disabilities in near future.