In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears...In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.展开更多
In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user pro...In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal;the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body's minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.展开更多
Reliability-based hybrid automatic repeat request (HARQ) (RB-HARQ) is a recently developed form of incremental-redundancy ARQ. It achieves good performance whereas large retransmission request packets should be fe...Reliability-based hybrid automatic repeat request (HARQ) (RB-HARQ) is a recently developed form of incremental-redundancy ARQ. It achieves good performance whereas large retransmission request packets should be fed back. In this paper, in order to reduce the number of the fed back bits, we propose a HARQ scheme applied in time duplex division orthogonal frequency division multiplexing (TDD- OFI)M) system over the slow fading channel which is named channel-based HARQ (CB-HARQ). Because one bit which meets deep fading is always with small value of log likelihood ratio (LLR) during the process of decoding of LDPC code, the bits transmitted on the carrier with deep fading are retransmitted. At the receiver, the decoder will compute the locations of retransmission bits according to the channel fading values which are gotten by utilizing the feature of channel symmetry in TDD mode. So the indices of retransmission bits are avoided to be transmitted. Simulation results show that this method achieves better BER performance and requires much smaller request packets in feedback link.展开更多
Hybrid loader 's comprehensive performance mainly depends on the performance of hydraulic torque converter during its driving and working. Hybrid loader and hydraulic torque converter are taken for the research ob...Hybrid loader 's comprehensive performance mainly depends on the performance of hydraulic torque converter during its driving and working. Hybrid loader and hydraulic torque converter are taken for the research objects. The primary characteristic curve of hydraulic torque converter and the traction curve of hybrid loader are acquired by analyzing the characteristic parameters of hydraulic torque converter, the characteristic parameters of engine, the characteristic parameters of battery pack and geometric parameters of hybrid loader. The gear shift curves based on the best energy saving performance and the best power performance are acquired respectively with the opening of throttle,the speed of pump wheel and the speed of turbine as parameters. Then the two curves are combined to get the comprehensive gear shift curve. Radical basis function( RBF) neural network is applied to building the gear shift strategy to keep hybrid loader with the best power performance and energy saving performance. The experimental bench is set up for experimental verification. It proves that both of the power performance and energy saving performance of hybrid loader are improved effectively by using the automatic shift strategy.展开更多
Present day power scenarios demand a high quality uninterrupted power supply and needs environmental issues to be addressed. Both concerns can be dealt with by the introduction of the renewable sources to the existing...Present day power scenarios demand a high quality uninterrupted power supply and needs environmental issues to be addressed. Both concerns can be dealt with by the introduction of the renewable sources to the existing power system. Thus, automatic generation control(AGC) with diverse renewable sources and a modified-cascaded controller are presented in the paper.Also, a new hybrid scheme of the improved teaching learning based optimization-differential evolution(hITLBO-DE) algorithm is applied for providing optimization of controller parameters. A study of the system with a technique such as TLBO applied to a proportional integral derivative(PID), integral double derivative(IDD) and PIDD is compared to hITLBO-DE tuned cascaded controller with dynamic load change.The suggested methodology has been extensively applied to a 2-area system with a diverse source power system with various operation time non-linearities such as dead-band of, generation rate constraint and reheat thermal units. The multi-area system with reheat thermal plants, hydel plants and a unit of a wind-diesel combination is tested with the cascaded controller scheme with a different controller setting for each area. The variation of the load is taken within 1% to 5% of the connected load and robustness analysis is shown by modifying essential factors simultaneously by± 30%. Finally, the proposed scheme of controller and optimization technique is also tested with a 5-equal area thermal system with non-linearities. The simulation results demonstrate the superiority of the proposed controller and algorithm under a dynamically changing load.展开更多
In order to bridge the semantic gap exists in image retrieval, this paper propose an approach combining generative and discriminative learning to accomplish the task of automatic image annotation and retrieval. We fir...In order to bridge the semantic gap exists in image retrieval, this paper propose an approach combining generative and discriminative learning to accomplish the task of automatic image annotation and retrieval. We firstly present continuous probabilistic latent semantic analysis (PLSA) to model continuous quantity. Furthermore, we propose a hybrid framework which employs continuous PLSA to model visual features of images in generative learning stage and uses ensembles of classifier chains to classify the multi-label data in discriminative learning stage. Since the framework combines the advantages of generative and discriminative learning, it can predict semantic annotation precisely for unseen images. Finally, we conduct a series of experiments on a standard Corel dataset. The experiment results show that our approach outperforms many state-of-the-art approaches.展开更多
Nowadays,wood identification is made by experts using hand lenses,wood atlases,and field manuals which take a lot of cost and time for the training process.The quantity and species must be strictly set up,and accurate...Nowadays,wood identification is made by experts using hand lenses,wood atlases,and field manuals which take a lot of cost and time for the training process.The quantity and species must be strictly set up,and accurate identification of the wood species must be made during exploitation to monitor trade and enforce regulations to stop illegal logging.With the development of science,wood identification should be supported with technology to enhance the perception of fairness of trade.An automatic wood identification system and a dataset of 50 commercial wood species from Asia are established,namely,wood anatomical images collected and used to train for the proposed model.In the convolutional neural network(CNN),the last layers are usually soft-max functions with dense layers.These layers contain the most parameters that affect the speed model.To reduce the number of parameters in the last layers of the CNN model and enhance the accuracy,the structure of the model should be optimized and developed.Therefore,a hybrid of convolutional neural network and random forest model(CNN-RF model)is introduced to wood identification.The accuracy’s hybrid model is more than 98%,and the processing speed is 3 times higher than the CNN model.The highest accuracy is 1.00 in some species,and the lowest is 0.92.These results show the excellent adaptability of the hybrid model in wood identification based on anatomical images.It also facilitates further investigations of wood cells and has implications for wood science.展开更多
For the bi-power system adopted widely in future armored vehicles,a hybrid power generator with dual stator-winding was proposed.Its structure and working principle were analyzed first,and its main parameters were det...For the bi-power system adopted widely in future armored vehicles,a hybrid power generator with dual stator-winding was proposed.Its structure and working principle were analyzed first,and its main parameters were determined and verified according to the power requirements.The system's mathematical model was established,and a decoupled control method was put forward on the basis of the instantaneous reactive power theory.For the voltage building-up,a voltage control strategy was designed on the basis of mixed reactive power compensation to implement stabilized 28V and 270V outputs simultaneously.The simulation results show that the stabilization accuracy and disturbance rejection ability of the system are improved much more than other ordinary generators.展开更多
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2001AA501200, 2003AA501200).
文摘In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
文摘In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal;the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body's minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.
基金the National High Technology Research and Development Programme of China(No.2003AA12331004)
文摘Reliability-based hybrid automatic repeat request (HARQ) (RB-HARQ) is a recently developed form of incremental-redundancy ARQ. It achieves good performance whereas large retransmission request packets should be fed back. In this paper, in order to reduce the number of the fed back bits, we propose a HARQ scheme applied in time duplex division orthogonal frequency division multiplexing (TDD- OFI)M) system over the slow fading channel which is named channel-based HARQ (CB-HARQ). Because one bit which meets deep fading is always with small value of log likelihood ratio (LLR) during the process of decoding of LDPC code, the bits transmitted on the carrier with deep fading are retransmitted. At the receiver, the decoder will compute the locations of retransmission bits according to the channel fading values which are gotten by utilizing the feature of channel symmetry in TDD mode. So the indices of retransmission bits are avoided to be transmitted. Simulation results show that this method achieves better BER performance and requires much smaller request packets in feedback link.
基金The Youth Foundaticn Projects of the National Natural Science Foundation of China(No.61403236)
文摘Hybrid loader 's comprehensive performance mainly depends on the performance of hydraulic torque converter during its driving and working. Hybrid loader and hydraulic torque converter are taken for the research objects. The primary characteristic curve of hydraulic torque converter and the traction curve of hybrid loader are acquired by analyzing the characteristic parameters of hydraulic torque converter, the characteristic parameters of engine, the characteristic parameters of battery pack and geometric parameters of hybrid loader. The gear shift curves based on the best energy saving performance and the best power performance are acquired respectively with the opening of throttle,the speed of pump wheel and the speed of turbine as parameters. Then the two curves are combined to get the comprehensive gear shift curve. Radical basis function( RBF) neural network is applied to building the gear shift strategy to keep hybrid loader with the best power performance and energy saving performance. The experimental bench is set up for experimental verification. It proves that both of the power performance and energy saving performance of hybrid loader are improved effectively by using the automatic shift strategy.
文摘Present day power scenarios demand a high quality uninterrupted power supply and needs environmental issues to be addressed. Both concerns can be dealt with by the introduction of the renewable sources to the existing power system. Thus, automatic generation control(AGC) with diverse renewable sources and a modified-cascaded controller are presented in the paper.Also, a new hybrid scheme of the improved teaching learning based optimization-differential evolution(hITLBO-DE) algorithm is applied for providing optimization of controller parameters. A study of the system with a technique such as TLBO applied to a proportional integral derivative(PID), integral double derivative(IDD) and PIDD is compared to hITLBO-DE tuned cascaded controller with dynamic load change.The suggested methodology has been extensively applied to a 2-area system with a diverse source power system with various operation time non-linearities such as dead-band of, generation rate constraint and reheat thermal units. The multi-area system with reheat thermal plants, hydel plants and a unit of a wind-diesel combination is tested with the cascaded controller scheme with a different controller setting for each area. The variation of the load is taken within 1% to 5% of the connected load and robustness analysis is shown by modifying essential factors simultaneously by± 30%. Finally, the proposed scheme of controller and optimization technique is also tested with a 5-equal area thermal system with non-linearities. The simulation results demonstrate the superiority of the proposed controller and algorithm under a dynamically changing load.
文摘In order to bridge the semantic gap exists in image retrieval, this paper propose an approach combining generative and discriminative learning to accomplish the task of automatic image annotation and retrieval. We firstly present continuous probabilistic latent semantic analysis (PLSA) to model continuous quantity. Furthermore, we propose a hybrid framework which employs continuous PLSA to model visual features of images in generative learning stage and uses ensembles of classifier chains to classify the multi-label data in discriminative learning stage. Since the framework combines the advantages of generative and discriminative learning, it can predict semantic annotation precisely for unseen images. Finally, we conduct a series of experiments on a standard Corel dataset. The experiment results show that our approach outperforms many state-of-the-art approaches.
文摘Nowadays,wood identification is made by experts using hand lenses,wood atlases,and field manuals which take a lot of cost and time for the training process.The quantity and species must be strictly set up,and accurate identification of the wood species must be made during exploitation to monitor trade and enforce regulations to stop illegal logging.With the development of science,wood identification should be supported with technology to enhance the perception of fairness of trade.An automatic wood identification system and a dataset of 50 commercial wood species from Asia are established,namely,wood anatomical images collected and used to train for the proposed model.In the convolutional neural network(CNN),the last layers are usually soft-max functions with dense layers.These layers contain the most parameters that affect the speed model.To reduce the number of parameters in the last layers of the CNN model and enhance the accuracy,the structure of the model should be optimized and developed.Therefore,a hybrid of convolutional neural network and random forest model(CNN-RF model)is introduced to wood identification.The accuracy’s hybrid model is more than 98%,and the processing speed is 3 times higher than the CNN model.The highest accuracy is 1.00 in some species,and the lowest is 0.92.These results show the excellent adaptability of the hybrid model in wood identification based on anatomical images.It also facilitates further investigations of wood cells and has implications for wood science.
文摘For the bi-power system adopted widely in future armored vehicles,a hybrid power generator with dual stator-winding was proposed.Its structure and working principle were analyzed first,and its main parameters were determined and verified according to the power requirements.The system's mathematical model was established,and a decoupled control method was put forward on the basis of the instantaneous reactive power theory.For the voltage building-up,a voltage control strategy was designed on the basis of mixed reactive power compensation to implement stabilized 28V and 270V outputs simultaneously.The simulation results show that the stabilization accuracy and disturbance rejection ability of the system are improved much more than other ordinary generators.