The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communicatio...The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.展开更多
In this paper,we propose an extended hybrid carrier system based on the weighted fractional Fourier transform to ensure the reliability of wireless communication.The proposed scheme improves the dispersion and compens...In this paper,we propose an extended hybrid carrier system based on the weighted fractional Fourier transform to ensure the reliability of wireless communication.The proposed scheme improves the dispersion and compensation capabilities of the hybrid carrier system for channel fading through the design of the signal power distribution,which has greatly reduced the probability of high-power distortion of the signal and improved the bit error rate performance as a result.Theoretical analysis has shown the superiority of the extended hybrid carrier system.With a lower cost of computational complexity increment,the proposed scheme obtains a performance improvement without occupying additional time-frequency physical resources.Compared with the existing hybrid carrier scheme,numerical simulation results have shown that the proposed extended hybrid carrier scheme has better anti-fading performance under the doubly-selective channel and improves the reliability of the wireless communication system effectively.展开更多
Recently a Hybrid Carrier (HC) scheme based on Weighted-type Fractional Fourier Transform (WFRFT) was proposed and developed, which contains Single Carrier (SC) and Multi-Carrier (MC) synergetie transmission. ...Recently a Hybrid Carrier (HC) scheme based on Weighted-type Fractional Fourier Transform (WFRFT) was proposed and developed, which contains Single Carrier (SC) and Multi-Carrier (MC) synergetie transmission. The wide interest is primarily due to its appealing characteristics, such as the robust performances in different types of selective fading channels and a great deal of potential for secure communications. According to the literatures, the HC signal and SC or MC signal probability distributions are different. In particular, some benefits of this HC scheme are brought by the quasi-Gaussian distribution of WFRFT signals. However, until now researchers have only presented statistic properties through computer simulations, and the accurate expressions of signals are not derived yet. In this paper, we derive the accu- rate and rigorously established closed-form expressions of Probability Density Function (PDF) of WFRFT signal real and imaginary parts with a large number of QPSK subcarriers, and this PDF can describe the behavior of data modulated by WFRFT, avoiding the complex computation for extensive computer simulations. Furthermore, the components of PDF expression are described and analyzed, and it is revealed that the tendency of signal quasi-Gaussian changes with the increasing of the parameter a (a in (0,1]). To validate the analytical results, extensive simulations have been conducted, showing a very good match between the analytical results and the real situations. The contribution of this paper may be useful to deduce the closed form expressions of Bit Error Ratio (BER), the Complementary Cumulative Distribution Function (CCDF) of Peak to Average Power Ratio (PAPR), and other analytical studies which adopt the PDF.展开更多
A high-performance PMOSFET based on silicon material of hybrid orientation is obtained.Hybrid orientation wafers,integrated by(100) and(110) crystal orientation,are fabricated using silicon-silicon bonding, chemic...A high-performance PMOSFET based on silicon material of hybrid orientation is obtained.Hybrid orientation wafers,integrated by(100) and(110) crystal orientation,are fabricated using silicon-silicon bonding, chemical mechanical polishing,etching silicon and non-selective expitaxy.A PMOSFET with W/L = 50μm/8μm is also processed,and the measured results show that the drain-source current and peak mobility of the PMOSFET are enhanced by up to 50.7%and 150%at V_(gs) =-15 V and V_(ds) =-0.5 V,respectively.The mobility values are higher than that reported in the literature.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant U23A20278in part by the National Natural Science Foundation of China under Grant 62171151in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2021012。
文摘The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.
基金supported in part by the National Natural Science Foundation of China under Grant 61901140,in part by the National Natural Science Foundation of China under Grant 62171151in part by the Science and Technology on Communication Networks Laboratory under Grant 6142104190203in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2021012。
文摘In this paper,we propose an extended hybrid carrier system based on the weighted fractional Fourier transform to ensure the reliability of wireless communication.The proposed scheme improves the dispersion and compensation capabilities of the hybrid carrier system for channel fading through the design of the signal power distribution,which has greatly reduced the probability of high-power distortion of the signal and improved the bit error rate performance as a result.Theoretical analysis has shown the superiority of the extended hybrid carrier system.With a lower cost of computational complexity increment,the proposed scheme obtains a performance improvement without occupying additional time-frequency physical resources.Compared with the existing hybrid carrier scheme,numerical simulation results have shown that the proposed extended hybrid carrier scheme has better anti-fading performance under the doubly-selective channel and improves the reliability of the wireless communication system effectively.
基金supported by the National Natural Science Foundation General Program of China(No.61201146)the National Basic Research Program of China(2013CB329003)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2015022)
文摘Recently a Hybrid Carrier (HC) scheme based on Weighted-type Fractional Fourier Transform (WFRFT) was proposed and developed, which contains Single Carrier (SC) and Multi-Carrier (MC) synergetie transmission. The wide interest is primarily due to its appealing characteristics, such as the robust performances in different types of selective fading channels and a great deal of potential for secure communications. According to the literatures, the HC signal and SC or MC signal probability distributions are different. In particular, some benefits of this HC scheme are brought by the quasi-Gaussian distribution of WFRFT signals. However, until now researchers have only presented statistic properties through computer simulations, and the accurate expressions of signals are not derived yet. In this paper, we derive the accu- rate and rigorously established closed-form expressions of Probability Density Function (PDF) of WFRFT signal real and imaginary parts with a large number of QPSK subcarriers, and this PDF can describe the behavior of data modulated by WFRFT, avoiding the complex computation for extensive computer simulations. Furthermore, the components of PDF expression are described and analyzed, and it is revealed that the tendency of signal quasi-Gaussian changes with the increasing of the parameter a (a in (0,1]). To validate the analytical results, extensive simulations have been conducted, showing a very good match between the analytical results and the real situations. The contribution of this paper may be useful to deduce the closed form expressions of Bit Error Ratio (BER), the Complementary Cumulative Distribution Function (CCDF) of Peak to Average Power Ratio (PAPR), and other analytical studies which adopt the PDF.
基金supported by the National Basic Research Program of China(No.61398)
文摘A high-performance PMOSFET based on silicon material of hybrid orientation is obtained.Hybrid orientation wafers,integrated by(100) and(110) crystal orientation,are fabricated using silicon-silicon bonding, chemical mechanical polishing,etching silicon and non-selective expitaxy.A PMOSFET with W/L = 50μm/8μm is also processed,and the measured results show that the drain-source current and peak mobility of the PMOSFET are enhanced by up to 50.7%and 150%at V_(gs) =-15 V and V_(ds) =-0.5 V,respectively.The mobility values are higher than that reported in the literature.