期刊文献+
共找到1,900篇文章
< 1 2 95 >
每页显示 20 50 100
Optimization of LSTM Ship Trajectory Prediction Based on Hybrid Genetic Algorithm
1
作者 ZHAO Pengfei 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期89-102,共14页
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit... Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction. 展开更多
关键词 trajectory prediction LSTM hybrid genetic algorithm
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
2
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Optimization of Multi-Execution Modes and Multi-Resource-Constrained Offshore Equipment Project Scheduling Based on a Hybrid Genetic Algorithm
3
作者 Qi Zhou Jinghua Li +2 位作者 Ruipu Dong Qinghua Zhou Boxin Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1263-1281,共19页
Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as r... Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as resourceconstrained project scheduling problems(RCPSPs).To solve RCPSP problems in offshore engineering construction more rapidly,a hybrid genetic algorithmwas established.To solve the defects of genetic algorithms,which easily fall into the local optimal solution,a local search operation was added to a genetic algorithm to defend the offspring after crossover/mutation.Then,an elitist strategy and adaptive operators were adopted to protect the generated optimal solutions,reduce the computation time and avoid premature convergence.A calibrated function method was used to cater to the roulette rules,and appropriate rules for encoding,decoding and crossover/mutation were designed.Finally,a simple network was designed and validated using the case study of a real offshore project.The performance of the genetic algorithmand a simulated annealing algorithmwas compared to validate the feasibility and effectiveness of the approach. 展开更多
关键词 Offshore project multi-execution modes resource-constrained project scheduling hybrid genetic algorithm
下载PDF
Series-parallel Hybrid Vehicle Control Strategy Design and Optimization Using Real-valued Genetic Algorithm 被引量:14
4
作者 XIONG Weiwei YIN Chengliang ZHANG Yong ZHANG Jianlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期862-868,共7页
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been... Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles. 展开更多
关键词 series-parallel hybrid electric vehicle control strategy DESIGN OPTIMIZATION real-valued genetic algorithm
下载PDF
Identification of vibration loads on hydro generator by using hybrid genetic algorithm 被引量:6
5
作者 Shouju Li Yingxi Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第6期603-610,共8页
Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybr... Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybrid genetic algorithm. From the measured dynamic responses of a hydro generator, an appropriate estimation algorithm is needed to identify the loading parameters, including the main frequencies and amplitudes of vibrating forces. In order to identify parameters in an efficient and robust manner, an optimization method is proposed that combines genetic algorithm with simulated annealing and elitist strategy. The hybrid genetic algorithm is then used to tackle an ill-posed problem of parameter identification, in which the effectiveness of the proposed optimization method is confirmed by its comparison with actual observation data. 展开更多
关键词 hybrid genetic algorithm Parameteridentification Vibration responses Fieldmeasurement Simulated annealing
下载PDF
Optimization of the seismic processing phase-shift plus finite-difference migration operator based on a hybrid genetic and simulated annealing algorithm 被引量:2
6
作者 Luo Renze Huang Yuanyi +2 位作者 Liang Xianghao Luo Jun Cao Ying 《Petroleum Science》 SCIE CAS CSCD 2013年第2期190-194,共5页
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome... Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation. 展开更多
关键词 Migration operator phase-shift plus finite-difference hybrid algorithm genetic andsimulated annealing algorithm optimization coefficient
下载PDF
APPLICATION OF HYBRID GENETIC ALGORITHM IN AEROELASTIC MULTIDISCIPLINARY DESIGN OPTIMIZATION OF LARGE AIRCRAFT 被引量:2
7
作者 唐长红 万志强 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期109-117,共9页
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th... The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm. 展开更多
关键词 aeroelasticity multidisciplinary design optimization genetic/gradient-based hybrid algorithm large aircraft
下载PDF
Optimization of projectile aerodynamic parameters based on hybrid genetic algorithm
8
作者 刘霖 田晓丽 +2 位作者 高小东 甘桃元 佘新继 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期364-367,共4页
Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameter... Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameters of projectile. By combining the traditional simulated annealing method that is easy to fall into local optimum solution but hard to get global parameters with the genetic algorithm that has good global optimization ability but slow local optimization ability, the hybrid genetic algo- rithm makes full use of the advantages of the two algorithms for the optimization of projectile aerodynamic parameters. The simulation results show that the hybrid genetic algorithm is better than a single algorithm. 展开更多
关键词 projectile aerodynamic parameters parameter optimization hybrid genetic algorithm
下载PDF
Nonlinear amplitude inversion using a hybrid quantum genetic algorithm and the exact zoeppritz equation 被引量:3
9
作者 Ji-Wei Cheng Feng Zhang Xiang-Yang Li 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1048-1064,共17页
The amplitude versus offset/angle(AVO/AVA)inversion which recovers elastic properties of subsurface media is an essential tool in oil and gas exploration.In general,the exact Zoeppritz equation has a relatively high a... The amplitude versus offset/angle(AVO/AVA)inversion which recovers elastic properties of subsurface media is an essential tool in oil and gas exploration.In general,the exact Zoeppritz equation has a relatively high accuracy in modelling the reflection coefficients.However,amplitude inversion based on it is highly nonlinear,thus,requires nonlinear inversion techniques like the genetic algorithm(GA)which has been widely applied in seismology.The quantum genetic algorithm(QGA)is a variant of the GA that enjoys the advantages of quantum computing,such as qubits and superposition of states.It,however,suffers from limitations in the areas of convergence rate and escaping local minima.To address these shortcomings,in this study,we propose a hybrid quantum genetic algorithm(HQGA)that combines a self-adaptive rotating strategy,and operations of quantum mutation and catastrophe.While the selfadaptive rotating strategy improves the flexibility and efficiency of a quantum rotating gate,the operations of quantum mutation and catastrophe enhance the local and global search abilities,respectively.Using the exact Zoeppritz equation,the HQGA was applied to both synthetic and field seismic data inversion and the results were compared to those of the GA and QGA.A number of the synthetic tests show that the HQGA requires fewer searches to converge to the global solution and the inversion results have generally higher accuracy.The application to field data reveals a good agreement between the inverted parameters and real logs. 展开更多
关键词 Nonlinear inversion AVO/AVA inversion hybrid quantum genetic algorithm(HQGA)
下载PDF
Optimal Sizing of Solar/Wind Hybrid Off-Grid Microgrids Using an Enhanced Genetic Algorithm 被引量:2
10
作者 Abdrahamane Traoré Hatem Elgothamy Mohamed A. Zohdy 《Journal of Power and Energy Engineering》 2018年第5期64-77,共14页
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e... This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods. 展开更多
关键词 Optimization OFF-GRID Microgrid Renewable ENERGY ENERGY Storage Systems (ESS) SOLAR Photovoltaic (PV) WIND Battery hybrid genetic algorithm (GA)
下载PDF
A ROBUST PHASE-ONLY DIRECT DATA DOMAIN ALGORITHM BASED ON GENERALIZED RAYLEIGH QUOTIENT OPTIMIZATION USING HYBRID GENETIC ALGORITHM 被引量:2
11
作者 Shao Wei Qian Zuping Yuan Feng 《Journal of Electronics(China)》 2007年第4期560-566,共7页
A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency ... A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA. 展开更多
关键词 Generalized Rayleigh quotient hybrid genetic algorithm Phase-only optimization Direct Data Domain Least Squares (D^3LS) algorithm Nelder-Mead simplex algorithm
下载PDF
Solving Travelling Salesman Problem with an Improved Hybrid Genetic Algorithm 被引量:4
12
作者 Bao Lin Xiaoyan Sun Sana Salous 《Journal of Computer and Communications》 2016年第15期98-106,共10页
We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expe... We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expected to obtain higher quality solutions within a reasonable computational time for TSP by perfectly integrating GA and the local search. The elitist choice strategy, the local search crossover operator and the double-bridge random mutation are highlighted, to enhance the convergence and the possibility of escaping from the local optima. The experimental results illustrate that the novel hybrid genetic algorithm outperforms other genetic algorithms by providing higher accuracy and satisfactory efficiency in real optimization processing. 展开更多
关键词 genetic algorithm hybrid Local Search TSP
下载PDF
The RHSA Strategy for the Allocation of Outbound Containers Based on the Hybrid Genetic Algorithm 被引量:1
13
作者 Meilong Le Hang Yu 《Journal of Marine Science and Application》 2013年第3期344-350,共7页
Secure storage yard is one of the optimal core goals of container transportation;thus,making the necessary storage arrangements has become the most crucial part of the container terminal management systems(CTMS).Thi... Secure storage yard is one of the optimal core goals of container transportation;thus,making the necessary storage arrangements has become the most crucial part of the container terminal management systems(CTMS).This paper investigates a random hybrid stacking algorithm(RHSA) for outbound containers that randomly enter the yard.In the first stage of RHSA,the distribution among blocks was analyzed with respect to the utilization ratio.In the second stage,the optimization of bay configuration was carried out by using the hybrid genetic algorithm.Moreover,an experiment was performed to test the RHSA.The results show that the explored algorithm is useful to increase the efficiency. 展开更多
关键词 random hybrid stacking algorithm genetic algorithm container yard operation container stowage plan handling cost utilization ratio
下载PDF
Hybrid genetic algorithm for the optimization of mine ventilation network 被引量:1
14
作者 ZHAO Dan LIU Jian +1 位作者 PAN Jing-tao MA Heng 《Journal of Coal Science & Engineering(China)》 2009年第4期389-393,共5页
Used genetic algorithm (GA) to optimize the network of ventilation in order toavoid artificial convergence and speed up the convergence rate to introduce the Powellalgorithm. The Powell algorithm had been integrated i... Used genetic algorithm (GA) to optimize the network of ventilation in order toavoid artificial convergence and speed up the convergence rate to introduce the Powellalgorithm. The Powell algorithm had been integrated into GA. Powell had the effectivecapacity of solving the local optimal solution. Powell and the cross as a method ofchoice, a variation of the parallel operator, can be a better solution to the prematureconvergence of the GA problem. The two methods will be improved to make it an effective combination of hybrid GA called hybrid genetic algorithm (HGA) for the introductionof mine ventilation network optimization and to be used to solve the problem of regulating mine optimization. 展开更多
关键词 hybrid genetic algorithm(GA) Powell algorithm ventilation net-work optimization
下载PDF
Groundwater level prediction based on hybrid hierarchy genetic algorithm and RBF neural network 被引量:1
15
作者 屈吉鸿 黄强 +1 位作者 陈南祥 徐建新 《Journal of Coal Science & Engineering(China)》 2007年第2期170-174,共5页
As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcomi... As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision. 展开更多
关键词 hybrid hierarchy genetic algorithm radial basis function neural network groundwater level prediction model
下载PDF
Application of hybrid coded genetic algorithm in fuzzy neural network controller
16
作者 杨振强 杨智民 +2 位作者 王常虹 庄显义 宁慧 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第1期65-68,共4页
Presents the fuzzy neural network optimized by hybrid coded genetic algorithm of decimal encoding and binary encoding, the searching ability and stability of genetic algorithms enhanced by using binary encoding during... Presents the fuzzy neural network optimized by hybrid coded genetic algorithm of decimal encoding and binary encoding, the searching ability and stability of genetic algorithms enhanced by using binary encoding during the crossover operation and decimal encoding during the mutation operation, and the way of accepting new individuals by probability adopted, by which a new individual is accepted and its parent is discarded when its fitness is higher than that of its parent, and a new individual is accepted by probability when its fitness is lower than that of its parent. And concludes with calculations made with an example that these improvements enhance the speed of genetic algorithms to optimize the fuzzy neural network controller. 展开更多
关键词 genetic algorithm fuzzy NEURAL network COST function hybrid CODING
下载PDF
Hybrid Genetic Algorithm for Engineering Structural Optimization with Dis crete Variables
17
作者 WEI Ying-zi 1,2,3, ZHAO Ming-yang 1 (1. Robotics Laboratory, Shenyang Institute of Automation, Chinese Acad emy of Science, Shenyang 110016, China 2. Shenyang Institute of Technology , Shenyang 110016, China 3. Graduate School of the Chinese Academy of Scienc es, Beijing 100039, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期178-,共1页
Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r.... Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA. 展开更多
关键词 hybrid genetic algorithm discrete variables o ptimization design imitative full-stress
下载PDF
Multicast Routing Based on Hybrid Genetic Algorithm
18
作者 曹元大 蔡刿 《Journal of Beijing Institute of Technology》 EI CAS 2005年第2期130-134,共5页
A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorith... A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability. 展开更多
关键词 multicast routing hybrid genetic algorithm(HGA) simulation algorithm Steiner tree
下载PDF
Identification of Magnetic Bearing Stiffness and Damping Based on Hybrid Genetic Algorithm
19
作者 Zhao Chen Zhou Jin +2 位作者 Xu Yuanping Di Long Ji Minlai 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第2期211-219,共9页
Identifying the stiffness and damping of active magnetic bearings(AMBs)is necessary since those parameters can affect the stability and performance of the high-speed rotor AMBs system.A new identification method is pr... Identifying the stiffness and damping of active magnetic bearings(AMBs)is necessary since those parameters can affect the stability and performance of the high-speed rotor AMBs system.A new identification method is proposed to identify the stiffness and damping coefficients of a rotor AMB system.This method combines the global optimization capability of the genetic algorithm(GA)and the local search ability of Nelder-Mead simplex method.The supporting parameters are obtained using the hybrid GA based on the experimental unbalance response calculated through the transfer matrix method.To verify the identified results,the experimental stiffness and damping coefficients are employed to simulate the unbalance responses for the rotor AMBs system using the finite element method.The close agreement between the simulation and experimental data indicates that the proposed identified algorithm can effectively identify the AMBs supporting parameters. 展开更多
关键词 magnetic bearing hybrid genetic algorithm bearing parameters finite element model
下载PDF
New Hybrid Genetic Algorithm for Vertex Cover Problems
20
作者 HuoHongwei XuJin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第4期90-94,共5页
This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are ... This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are used to perform global exploration in a population, while neighborhood search methods are used to perform local exploitation around the chromosomes. The experimental results indicate that hybrid genetic algorithms can obtain solutions of excellent quality to the problem instances with different sizes. The pure genetic algorithms are outperformed by the neighborhood search heuristics procedures combined with genetic algorithms. 展开更多
关键词 vertex cover hybrid genetic algorithm scan-repair local improvement.
下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部