We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in cl...We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in classical convolutional neural networks,forming a new quantum convolutional layer to achieve unitary transformation of quantum states,enabling the model to more accurately extract hidden information from images.At the same time,we combine the classical fully connected layer with PQCs to form a new hybrid quantum-classical fully connected layer to further improve the accuracy of classification.Finally,we use the MNIST dataset to test the potential of the HQCCNN.The results indicate that the HQCCNN has good performance in solving classification problems.In binary classification tasks,the classification accuracy of numbers 5 and 7 is as high as 99.71%.In multivariate classification,the accuracy rate also reaches 98.51%.Finally,we compare the performance of the HQCCNN with other models and find that the HQCCNN has better classification performance and convergence speed.展开更多
A face-mask object detection model incorporating hybrid dilation convolutional network termed ResNet Hybrid-dilation-convolution Face-mask-detector (RHF) is proposed in this paper. Furthermore, a lightweight face-mask...A face-mask object detection model incorporating hybrid dilation convolutional network termed ResNet Hybrid-dilation-convolution Face-mask-detector (RHF) is proposed in this paper. Furthermore, a lightweight face-mask dataset named Light Masked Face Dataset (LMFD) and a medium-sized face-mask dataset named Masked Face Dataset (MFD) with data augmentation methods applied is also constructed in this paper. The hybrid dilation convolutional network is able to expand the perception of the convolutional kernel without concern about the discontinuity of image information during the convolution process. For the given two datasets being constructed above, the trained models are significantly optimized in terms of detection performance, training time, and other related metrics. By using the MFD dataset of 55,905 images, the RHF model requires roughly 10 hours less training time compared to ResNet50 with better detection results with mAP of 93.45%.展开更多
Aquatic medicine knowledge graph is an effective means to realize intelligent aquaculture.Graph completion technology is key to improving the quality of knowledge graph construction.However,the difficulty of semantic ...Aquatic medicine knowledge graph is an effective means to realize intelligent aquaculture.Graph completion technology is key to improving the quality of knowledge graph construction.However,the difficulty of semantic discrimination among similar entities and inconspicuous semantic features result in low accuracy when completing aquatic medicine knowledge graph with complex relationships.In this study,an aquatic medicine knowledge graph completion method(TransH+HConvAM)is proposed.Firstly,TransH is applied to split the vector plane between entities and relations,ameliorating the poor completion effect caused by low semantic resolution of entities.Then,hybrid convolution is introduced to obtain the global interaction of triples based on the complete interaction between head/tail entities and relations,which improves the semantic features of triples and enhances the completion effect of complex relationships in the graph.Experiments are conducted to verify the performance of the proposed method.The MR,MRR and Hit@10 of the TransH+HConvAM are found to be 674,0.339,and 0.361,respectively.This study shows that the model effectively overcomes the poor completion effect of complex relationships and improves the construction quality of the aquatic medicine knowledge graph,providing technical support for intelligent aquaculture.展开更多
Visual tracking is a classical computer vision problem with many applications.Efficient convolution operators(ECO)is one of the most outstanding visual tracking algorithms in recent years,it has shown great performanc...Visual tracking is a classical computer vision problem with many applications.Efficient convolution operators(ECO)is one of the most outstanding visual tracking algorithms in recent years,it has shown great performance using discriminative correlation filter(DCF)together with HOG,color maps and VGGNet features.Inspired by new deep learning models,this paper propose a hybrid efficient convolution operators integrating fully convolution network(FCN)and residual network(ResNet)for visual tracking,where FCN and ResNet are introduced in our proposed method to segment the objects from backgrounds and extract hierarchical feature maps of objects,respectively.Compared with the traditional VGGNet,our approach has higher accuracy for dealing with the issues of segmentation and image size.The experiments show that our approach would obtain better performance than ECO in terms of precision plot and success rate plot on OTB-2013 and UAV123 datasets.展开更多
With the advent of Industry 4.0(I4.0),predictive maintenance(PdM)methods have been widely adopted by businesses to deal with the condition of their machinery.With the help of I4.0,digital transformation,information te...With the advent of Industry 4.0(I4.0),predictive maintenance(PdM)methods have been widely adopted by businesses to deal with the condition of their machinery.With the help of I4.0,digital transformation,information techniques,computerised control,and communication networks,large amounts of data on operational and process conditions can be collected from multiple pieces of equipment and used to make an automated fault detection and diagnosis,all with the goal of reducing unscheduled maintenance,improving component utilisation,and lengthening the lifespan of the equipment.In this paper,we use smart approaches to create a PdM planning model.The five key steps of the created approach are as follows:(1)cleaning the data,(2)normalising the data,(3)selecting the best features,(4)making a decision about the prediction network,and(5)producing a prediction.At the outset,PdM-related data undergo data cleaning and normalisation to get everything in order and within some kind of bounds.The next step is to execute optimal feature selection in order to eliminate unnecessary data.This research presents the golden search optimization(GSO)algorithm,a powerful population-based optimization technique for efficient feature selection.The first phase of GSO is to produce a set of possible solutions or objects at random.These objects will then interact with one another using a straightforward mathematical model to find the best feasible answer.Due to the wide range over which the prediction values fall,machine learning and deep learning confront challenges in providing reliable predictions.This is why we recommend a multilayer hybrid convolution neural network(MLH-CNN).While conceptually similar to VGGNet,this approach uses fewer parameters while maintaining or improving classification correctness by adjusting the amount of network modules and channels.The projected perfect is evaluated on two datasets to show that it can accurately predict the future state of components for upkeep preparation.展开更多
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in classical convolutional neural networks,forming a new quantum convolutional layer to achieve unitary transformation of quantum states,enabling the model to more accurately extract hidden information from images.At the same time,we combine the classical fully connected layer with PQCs to form a new hybrid quantum-classical fully connected layer to further improve the accuracy of classification.Finally,we use the MNIST dataset to test the potential of the HQCCNN.The results indicate that the HQCCNN has good performance in solving classification problems.In binary classification tasks,the classification accuracy of numbers 5 and 7 is as high as 99.71%.In multivariate classification,the accuracy rate also reaches 98.51%.Finally,we compare the performance of the HQCCNN with other models and find that the HQCCNN has better classification performance and convergence speed.
文摘A face-mask object detection model incorporating hybrid dilation convolutional network termed ResNet Hybrid-dilation-convolution Face-mask-detector (RHF) is proposed in this paper. Furthermore, a lightweight face-mask dataset named Light Masked Face Dataset (LMFD) and a medium-sized face-mask dataset named Masked Face Dataset (MFD) with data augmentation methods applied is also constructed in this paper. The hybrid dilation convolutional network is able to expand the perception of the convolutional kernel without concern about the discontinuity of image information during the convolution process. For the given two datasets being constructed above, the trained models are significantly optimized in terms of detection performance, training time, and other related metrics. By using the MFD dataset of 55,905 images, the RHF model requires roughly 10 hours less training time compared to ResNet50 with better detection results with mAP of 93.45%.
基金supported by the Key Laboratory of Environment Controlled Aquaculture(Dalian Ocean University)Ministry of Education(No.2021-MOEKLECA-KF-05)the National Natural Science Foundation of China Youth Science(No.61802046)。
文摘Aquatic medicine knowledge graph is an effective means to realize intelligent aquaculture.Graph completion technology is key to improving the quality of knowledge graph construction.However,the difficulty of semantic discrimination among similar entities and inconspicuous semantic features result in low accuracy when completing aquatic medicine knowledge graph with complex relationships.In this study,an aquatic medicine knowledge graph completion method(TransH+HConvAM)is proposed.Firstly,TransH is applied to split the vector plane between entities and relations,ameliorating the poor completion effect caused by low semantic resolution of entities.Then,hybrid convolution is introduced to obtain the global interaction of triples based on the complete interaction between head/tail entities and relations,which improves the semantic features of triples and enhances the completion effect of complex relationships in the graph.Experiments are conducted to verify the performance of the proposed method.The MR,MRR and Hit@10 of the TransH+HConvAM are found to be 674,0.339,and 0.361,respectively.This study shows that the model effectively overcomes the poor completion effect of complex relationships and improves the construction quality of the aquatic medicine knowledge graph,providing technical support for intelligent aquaculture.
文摘Visual tracking is a classical computer vision problem with many applications.Efficient convolution operators(ECO)is one of the most outstanding visual tracking algorithms in recent years,it has shown great performance using discriminative correlation filter(DCF)together with HOG,color maps and VGGNet features.Inspired by new deep learning models,this paper propose a hybrid efficient convolution operators integrating fully convolution network(FCN)and residual network(ResNet)for visual tracking,where FCN and ResNet are introduced in our proposed method to segment the objects from backgrounds and extract hierarchical feature maps of objects,respectively.Compared with the traditional VGGNet,our approach has higher accuracy for dealing with the issues of segmentation and image size.The experiments show that our approach would obtain better performance than ECO in terms of precision plot and success rate plot on OTB-2013 and UAV123 datasets.
文摘With the advent of Industry 4.0(I4.0),predictive maintenance(PdM)methods have been widely adopted by businesses to deal with the condition of their machinery.With the help of I4.0,digital transformation,information techniques,computerised control,and communication networks,large amounts of data on operational and process conditions can be collected from multiple pieces of equipment and used to make an automated fault detection and diagnosis,all with the goal of reducing unscheduled maintenance,improving component utilisation,and lengthening the lifespan of the equipment.In this paper,we use smart approaches to create a PdM planning model.The five key steps of the created approach are as follows:(1)cleaning the data,(2)normalising the data,(3)selecting the best features,(4)making a decision about the prediction network,and(5)producing a prediction.At the outset,PdM-related data undergo data cleaning and normalisation to get everything in order and within some kind of bounds.The next step is to execute optimal feature selection in order to eliminate unnecessary data.This research presents the golden search optimization(GSO)algorithm,a powerful population-based optimization technique for efficient feature selection.The first phase of GSO is to produce a set of possible solutions or objects at random.These objects will then interact with one another using a straightforward mathematical model to find the best feasible answer.Due to the wide range over which the prediction values fall,machine learning and deep learning confront challenges in providing reliable predictions.This is why we recommend a multilayer hybrid convolution neural network(MLH-CNN).While conceptually similar to VGGNet,this approach uses fewer parameters while maintaining or improving classification correctness by adjusting the amount of network modules and channels.The projected perfect is evaluated on two datasets to show that it can accurately predict the future state of components for upkeep preparation.