期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Surface modification of polyolefin separators for lithium ion batteries to reduce thermal shrinkage without thickness increase 被引量:3
1
作者 Peng Zhao Juping Yang +4 位作者 Yuming Shang Li Wang Mou Fang Jianlong Wang Xiangming He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期138-144,共7页
Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/ino... Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators. 展开更多
关键词 thermal shrinkage organic/inorganic hybrid crosslinked network chemical grafting SEPARATOR lithium ion battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部