期刊文献+
共找到1,148篇文章
< 1 2 58 >
每页显示 20 50 100
Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow
1
作者 Baydaa Abdul Kareem Salah L.Zubaidi +1 位作者 Nadhir Al-Ansari Yousif Raad Muhsen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期1-41,共41页
Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques... Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches.Current researchers have also emphasised using hybrid models to improve forecast accuracy.Accordingly,this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years,summarising data preprocessing,univariate machine learning modelling strategy,advantages and disadvantages of standalone ML techniques,hybrid models,and performance metrics.This study focuses on two types of hybrid models:parameter optimisation-based hybrid models(OBH)and hybridisation of parameter optimisation-based and preprocessing-based hybridmodels(HOPH).Overall,this research supports the idea thatmeta-heuristic approaches precisely improveML techniques.It’s also one of the first efforts to comprehensively examine the efficiency of various meta-heuristic approaches(classified into four primary classes)hybridised with ML techniques.This study revealed that previous research applied swarm,evolutionary,physics,and hybrid metaheuristics with 77%,61%,12%,and 12%,respectively.Finally,there is still room for improving OBH and HOPH models by examining different data pre-processing techniques and metaheuristic algorithms. 展开更多
关键词 Univariate streamflow machine learning hybrid model data pre-processing performance metrics
下载PDF
Spatial Heterogeneity Modeling Using Machine Learning Based on a Hybrid of Random Forest and Convolutional Neural Network (CNN)
2
作者 Amadou Kindy Barry Anthony Waititu Gichuhi Lawrence Nderu 《Journal of Data Analysis and Information Processing》 2024年第3期319-347,共29页
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p... Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas. 展开更多
关键词 Spatial Heterogeneity Spatial data Feature Selection STandARDIZATION Machine Learning models hybrid models
下载PDF
Data-Driven Model Identification and Control of the Inertial Systems
3
作者 Irina Cojuhari 《Intelligent Control and Automation》 2023年第1期1-18,共18页
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy... In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation. 展开更多
关键词 data-driven model Identification Controller Tuning Undamped Transient Response Closed-Loop System Identification PID Controller
下载PDF
A Hybrid Spatial Dependence Model Based on Radial Basis Function Neural Networks (RBFNN) and Random Forest (RF)
4
作者 Mamadou Hady Barry Lawrence Nderu Anthony Waititu Gichuhi 《Journal of Data Analysis and Information Processing》 2023年第3期293-309,共17页
The majority of spatial data reveal some degree of spatial dependence. The term “spatial dependence” refers to the tendency for phenomena to be more similar when they occur close together than when they occur far ap... The majority of spatial data reveal some degree of spatial dependence. The term “spatial dependence” refers to the tendency for phenomena to be more similar when they occur close together than when they occur far apart in space. This property is ignored in machine learning (ML) for spatial domains of application. Most classical machine learning algorithms are generally inappropriate unless modified in some way to account for it. In this study, we proposed an approach that aimed to improve a ML model to detect the dependence without incorporating any spatial features in the learning process. To detect this dependence while also improving performance, a hybrid model was used based on two representative algorithms. In addition, cross-validation method was used to make the model stable. Furthermore, global moran’s I and local moran were used to capture the spatial dependence in the residuals. The results show that the HM has significant with a R2 of 99.91% performance compared to RBFNN and RF that have 74.22% and 82.26% as R2 respectively. With lower errors, the HM was able to achieve an average test error of 0.033% and a positive global moran’s of 0.12. We concluded that as the R2 value increases, the models become weaker in terms of capturing the dependence. 展开更多
关键词 Spatial data Spatial Dependence hybrid model Machine Learning Algorithms
下载PDF
Hybrid LEAP modeling method for long-term energy demand forecasting of regions with limited statistical data 被引量:3
5
作者 CHEN Rui RAO Zheng-hua LIAO Sheng-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2136-2148,共13页
An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited i... An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited in many regions. In this paper, on the basis of comprehensive literature review, we proposed a hybrid model based on the long-range alternative energy planning (LEAP) model to improve the accuracy of energy demand forecasting in these regions. By taking Hunan province, China as a typical case, the proposed hybrid model was applied to estimating the possible future energy demand and energy-saving potentials in different sectors. The structure of LEAP model was estimated by Sankey energy flow, and Leslie matrix and autoregressive integrated moving average (ARIMA) models were used to predict the population, industrial structure and transportation turnover, respectively. Monte-Carlo method was employed to evaluate the uncertainty of forecasted results. The results showed that the hybrid model combined with scenario analysis provided a relatively accurate forecast for the long-term energy demand in regions with limited statistical data, and the average standard error of probabilistic distribution in 2030 energy demand was as low as 0.15. The prediction results could provide supportive references to identify energy-saving potentials and energy development pathways. 展开更多
关键词 energy demand forecasting with limited data hybrid LEAP model ARIMA model Leslie matrix Monte-Carlo method
下载PDF
Dynamic Modeling and Motion Simulation for A Winged Hybrid-Driven Underwater Glider 被引量:30
6
作者 王树新 孙秀军 +2 位作者 王延辉 武建国 王晓鸣 《China Ocean Engineering》 SCIE EI 2011年第1期97-112,共16页
PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can b... PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials. 展开更多
关键词 hybrid-driven underwater glider autonomous underwater vehicle dynamic modeling momentum theorem
下载PDF
A Data-Driven Simulation Model for China Haze Monitor and Governance
7
作者 Xiaoyan Lu Hong Chen +1 位作者 Miao Wang Zhengying Cai 《World Journal of Engineering and Technology》 2016年第2期374-381,共8页
Recently, the China haze becomes more and more serious, but it is very difficult to model and control it. Here, a data-driven model is introduced for the simulation and monitoring of China haze. First, a multi-dimensi... Recently, the China haze becomes more and more serious, but it is very difficult to model and control it. Here, a data-driven model is introduced for the simulation and monitoring of China haze. First, a multi-dimensional evaluation system is built to evaluate the government performance of China haze. Second, a data-driven model is employed to reveal the operation mechanism of China’s haze and is described as a multi input and multi output system. Third, a prototype system is set up to verify the proposed scheme, and the result provides us with a graphical tool to monitor different haze control strategies. 展开更多
关键词 data-driven Haze Monitor MIMO Simulation model
下载PDF
A Data-Driven Car-Following Model Based on the Random Forest
8
作者 Huili Shi Tingli Wang +3 位作者 Fusheng Zhong Hanqing Wang Junyan Han Xiaoyuan Wang 《World Journal of Engineering and Technology》 2021年第3期503-515,共13页
The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare... The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare. In recent years, the related technologies of Intelligent Transportation System (ITS) re</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">presented by the Vehicles to Everything (V2X) technology have been developing rapidly. Utilizing the related technologies of ITS, the large-scale vehicle microscopic trajectory data with high quality can be acquired, which provides the research foundation for modeling the car-following behavior based on the data-driven methods. According to this point, a data-driven car-following model based on the Random Forest (RF) method was constructed in this work, and the Next Generation Simulation (NGSIM) dataset was used to calibrate and train the constructed model. The Artificial Neural Network (ANN) model, GM model, and Full Velocity Difference (FVD) model are em</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">ployed to comparatively verify the proposed model. The research results suggest that the model proposed in this work can accurately describe the car-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">following behavior with better performance under multiple performance indicators. 展开更多
关键词 Traffic Flow Car-Following model data-driven Method Random Forest Intelligent Transportation System
下载PDF
Blockchain-Based Cognitive Computing Model for Data Security on a Cloud Platform 被引量:1
9
作者 Xiangmin Guo Guangjun Liang +1 位作者 Jiayin Liu Xianyi Chen 《Computers, Materials & Continua》 SCIE EI 2023年第12期3305-3323,共19页
Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading... Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading to poor performance and privacy breaches.Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms,ensuring businesses can focus on business development.To ensure data security in cloud platforms,this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing(HD2C)model.However,the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of Things(IoT)in the cloud.HD2C is developed by combining Federated Learning(FL)with a Blockchain consensus algorithm to connect smart contracts with Proof of Authority.The“Data Island”problem can be solved by FL’s emphasis on privacy and lightning-fast processing,while Blockchain provides a decentralized incentive structure that is impervious to poisoning.FL with Blockchain allows quick consensus through smart member selection and verification.The HD2C paradigm significantly improves the computational processing efficiency of intelligent manufacturing.Extensive analysis results derived from IIoT datasets confirm HD2C superiority.When compared to other consensus algorithms,the Blockchain PoA’s foundational cost is significant.The accuracy and memory utilization evaluation results predict the total benefits of the system.In comparison to the values 0.004 and 0.04,the value of 0.4 achieves good accuracy.According to the experiment results,the number of transactions per second has minimal impact on memory requirements.The findings of this study resulted in the development of a brand-new IIoT framework based on blockchain technology. 展开更多
关键词 Blockchain Internet of Things(IoT) blockchain based cognitive computing hybridized data driven Cognitive Computing(HD2C) Federated Learning(FL) Proof of Authority(PoA)
下载PDF
Full field reservoir modeling of shale assets using advanced data-driven analytics 被引量:10
10
作者 Soodabeh Esmaili Shahab D.Mohaghegh 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期11-20,共10页
Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorpt... Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorption process and flow behavior in complex fracture systems- induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called "hard data" directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The "hard data" refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of "soft data"(non-measured, interpretive data such as frac length, width,height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset. 展开更多
关键词 Reservoir modeling data driven reservoir modeling Top-down modeling Shale reservoir modelING SHALE
下载PDF
A Hybrid Coupled Model for the Pacific Ocean–Atmosphere System.Part I: Description and Basic Performance 被引量:7
11
作者 ZHANG Rong-Hua 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期301-318,共18页
A hybrid coupled model (HCM) is constructed for El Nifio-Southern Oscillation (ENSO)-related modeling studies over almost the entire Pacific basin.An ocean general circulation model is coupled to a statistical atm... A hybrid coupled model (HCM) is constructed for El Nifio-Southern Oscillation (ENSO)-related modeling studies over almost the entire Pacific basin.An ocean general circulation model is coupled to a statistical atmospheric model for interannual wind stress anomalies to represent their dominant coupling with sea surface temperatures.In addition,various relevant forcing and feedback processes exist in the region and can affect ENSO in a significant way; their effects are simply represented using historical data and are incorporated into the HCM,including stochastic forcing of atmospheric winds,and feedbacks associated with freshwater flux,ocean biology-induced heating (OBH),and tropical instability waves (TIWs).In addition to its computational efficiency,the advantages of making use of such an HCM enable these related forcing and feedback processes to be represented individually or collectively,allowing their modulating effects on ENSO to be examined in a clean and clear way.In this paper,examples are given to illustrate the ability of the HCM to depict the mean ocean state,the circulation pathways connecting the subtropics and tropics in the western Pacific,and interannual variability associated with ENSO.As satellite data are taken to parameterize processes that are not explicitly represented in the HCM,this work also demonstrates an innovative method of using remotely sensed data for climate modeling.Further model applications related with ENSO modulations by extratropical influences and by various forcings and feedbacks will be presented in Part Ⅱ of this study. 展开更多
关键词 hybrid coupled model ocean-atmosphere coupling ENSO FORCING feedback satellite data
下载PDF
A Hybrid Neural Network and Box-Jenkins Models for Time Series Forecasting 被引量:1
12
作者 Mohammad Hadwan Basheer M.Al-Maqaleh +2 位作者 Fuad N.Al-Badani Rehan Ullah Khan Mohammed A.Al-Hagery 《Computers, Materials & Continua》 SCIE EI 2022年第3期4829-4845,共17页
Time series forecasting plays a significant role in numerous applications,including but not limited to,industrial planning,water consumption,medical domains,exchange rates and consumer price index.The main problem is ... Time series forecasting plays a significant role in numerous applications,including but not limited to,industrial planning,water consumption,medical domains,exchange rates and consumer price index.The main problem is insufficient forecasting accuracy.The present study proposes a hybrid forecastingmethods to address this need.The proposed method includes three models.The first model is based on the autoregressive integrated moving average(ARIMA)statistical model;the second model is a back propagation neural network(BPNN)with adaptive slope and momentum parameters;and the thirdmodel is a hybridization between ARIMA and BPNN(ARIMA/BPNN)and artificial neural networks and ARIMA(ARIMA/ANN)to gain the benefits of linear and nonlinearmodeling.The forecasting models proposed in this study are used to predict the indices of the consumer price index(CPI),and predict the expected number of cancer patients in the Ibb Province in Yemen.Statistical standard measures used to evaluate the proposed method include(i)mean square error,(ii)mean absolute error,(iii)root mean square error,and(iv)mean absolute percentage error.Based on the computational results,the improvement rate of forecasting the CPI dataset was 5%,71%,and 4%for ARIMA/BPNN model,ARIMA/ANN model,and BPNN model respectively;while the result for cancer patients’dataset was 7%,200%,and 19%for ARIMA/BPNNmodel,ARIMA/ANN model,and BPNNmodel respectively.Therefore,it is obvious that the proposed method reduced the randomness degree,and the alterations affected the time series with data non-linearity.The ARIMA/ANN model outperformed each of its components when it was applied separately in terms of increasing the accuracy of forecasting and decreasing the overall errors of forecasting. 展开更多
关键词 hybrid model forecasting non-linear data time series models cancer patients neural networks box-jenkins consumer price index
下载PDF
Data and Model Driven Task Offloading Strategy in the Dynamic Mobile Edge Computing System
13
作者 DONG Hairong WU Wei +2 位作者 SONG Haifeng LIU Zhen ZHANG Zixuan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第1期351-368,共18页
Mobile Edge Computing(MEC)provides communication and computational capabilities for the industrial Internet,meeting the demands of latency-sensitive tasks.Nevertheless,traditional model-driven task offloading strategi... Mobile Edge Computing(MEC)provides communication and computational capabilities for the industrial Internet,meeting the demands of latency-sensitive tasks.Nevertheless,traditional model-driven task offloading strategies face challenges in adapting to situations with unknown network communication status and computational capabilities.This limitation becomes notably significant in complex industrial networks of high-speed railway.Motivated by these considerations,a data and model-driven task offloading problem is proposed in this paper.A redundant communication network is designed to adapt to anomalous channel states when tasks are offloaded to edge servers.The link switching mechanism is executed by the train according to the attributes of the completed task.The task offloading optimization problem is formulated by introducing data-driven prediction of communication states into the traditional model.Furthermore,the optimal strategy is achieved by employing the informer-based prediction algorithm and the quantum particle swarm optimization method,which effectively tackle real-time optimization problems due to their low time complexity.The simulations illustrate that the data and model-driven task offloading strategy can predict the communication state in advance,thus reducing the cost of the system and improving its robustness. 展开更多
关键词 data driven model INFORMER mobile edge computing quantum particle swarm optimization task offloading.
原文传递
Product Data Model for Performance-driven Design
14
作者 Guang-Zhong Hu Xin-Jian Xu +2 位作者 Shou-Ne Xiao Guang-Wu Yang Fan Pu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1112-1122,共11页
When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency... When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency of the existing design theory, according to the performance features of complex mechanical products, the performance indices are introduced into the traditional design theory of "Requirement-Function-Structure" to construct a new five-domain design theory of "Client Requirement-Function-Performance-Structure-Design Parameter". To support design practice based on this new theory, a product data model is established by using per- formance indices and the mapping relationship between them and the other four domains. When the product data model is applied to high-speed train design and combining the existing research result and relevant standards, the corresponding data model and its structure involving five domains of high-speed trains are established, which can provide technical support for studying the relationships between typical performance indices and design parame- ters and the fast achievement of a high-speed train scheme design. The five domains provide a reference for the design specification and evaluation criteria of high speed train and a new idea for the train's parameter design. 展开更多
关键词 Complex product design Performance driven data model Mapping relationship High-speed train
下载PDF
Performance of a data-driven technique applied to changes in wave height and its effect on beach response 被引量:1
15
作者 José M.Horrillo-Caraballo Harshinie Karunarathna +1 位作者 Shun-qi Pan Dominic Reeve 《Water Science and Engineering》 EI CAS CSCD 2016年第1期42-51,共10页
In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the ea... In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the east coast of the USA, which is exposed to Atlantic Ocean swells and storm waves, and the latter is the Milford-on-Sea site at Christchurch Bay, on the south coast of England, which is partially sheltered from Atlantic swells but has a directionally bimodal wave exposure. The data sets comprise detailed bathymetric surveys of beach profiles covering a period of more than 25 years for the Duck site and over 18 years for the Milford-on-Sea site. The structure of the data sets and the data-driven methods are described. Canonical correlation analysis (CCA) was used to find linkages between the wave characteristics and beach profiles. The sensitivity of the linkages was investigated by deploying a wave height threshold to filter out the smaller waves incrementally. The results of the analysis indicate that, for the gently sloping sandy beach, waves of all heights are important to the morphological response. For the mixed sand and gravel beach, filtering the smaller waves improves the statistical fit and it suggests that low-height waves do not play a primary role in the medium-term morohological resoonse, which is primarily driven by the intermittent larger storm waves. 展开更多
关键词 Beach profile Canonical correlation analysis data-driven technique Empirical orthogonal function FORECAST Statistical model Wave height threshold
下载PDF
PERFORMANCE EVALUATION METHOD FOR BUSINESS PROCESS OF MACHINERY MANUFACTURER BASED ON DEA/AHP HYBRID MODEL 被引量:3
16
作者 WANG Ting YI Shuping YANG Yuanzhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期91-97,共7页
A set of indices for performance evaluation for business processes with multiple inputs and multiple outputs is proposed, which are found in machinery manufacturers. Based on the traditional methods of data envelopmen... A set of indices for performance evaluation for business processes with multiple inputs and multiple outputs is proposed, which are found in machinery manufacturers. Based on the traditional methods of data envelopment analysis (DEA) and analytical hierarchical process (AHP), a hybrid model called DEA/AHP model is proposed to deal with the evaluation of business process performance. With the proposed method, the DEA is firstly used to develop a pairwise comparison matrix, and then the AHP is applied to evaluate the performance of business process using the pairwise comparison matrix. The significant advantage of this hybrid model is the use of objective data instead of subjective human judgment for performance evaluation. In the case study, a project of business process reengineering (BPR) with a hydraulic machinery manufacturer is used to demonstrate the effectiveness of the DEA/AHP model. 展开更多
关键词 Business process data envelopment analysis(DEA) Analytical hierarchical process(AHP) hybrid model Performance evaluation
下载PDF
Development of typhoon driven wave nowcasting model in Southeast China Sea 被引量:7
17
作者 Zheng Jinhai Feng Xiangbo Yan Yixin 《Engineering Sciences》 EI 2011年第1期2-6,共5页
Using optimal interpolation data assimilation of observed wave spectrum around Northeast coast of Taiwan Island, the typhoon driven wave nowcasting model in Southeast China Sea is setup. The SWAN (simulating waves nea... Using optimal interpolation data assimilation of observed wave spectrum around Northeast coast of Taiwan Island, the typhoon driven wave nowcasting model in Southeast China Sea is setup. The SWAN (simulating waves nearshore) model is used to calculate wave field and the input wind field is the QSCAT/NCEP (Quick Scatterometer/National Centers for Environmental Prediction) data. The two-dimensional wavelet transform is applied to analyze the X-band radar image of nearshore wave field and it reveals that the observed wave spectrum has shoaling characteristics in frequency domain. The reverse calculation approach of wave spectrum in deep water is proposed and validated with experimental tests. The two-dimensional digital low-pass filter is used to obtain the initialization wave field. Wave data during Typhoon Sinlaku is used to calibrate the data assimilation parameters and test the reverse calculation approach. Data assimilation corrects the significant wave height and the low frequency spectra energy evidently at Beishuang Station along Fujian Province coast, where the entire assimilation indexes are positive in verification moments. The nowcasting wave field shows that the present model can obtain more accurate wave predictions for coastal and ocean engineering in Southeast China Sea. 展开更多
关键词 typhoon driven wave nowcasting model data assimilation spectrum reverse calculation
下载PDF
A One-Dimensional Hybrid Simulation of DC/RF Combined Driven Capacitive Plasma 被引量:1
18
作者 WANG Shuai XU Xiang WANG Younian 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第1期32-36,共5页
We developed a one-dimensional hybrid model to simulate the DC/RF combined driven capacitively coupled plasma for argon discharges. The numerical results are used to analyze the influence of the DC source on the plasm... We developed a one-dimensional hybrid model to simulate the DC/RF combined driven capacitively coupled plasma for argon discharges. The numerical results are used to analyze the influence of the DC source on the plasma density distribution, ion energy distributions (IEDs) and ion angle distributions (IADs) on both the RF and DC electrodes. The increase in DC voltage drives more high-energy ions to the electrode applied to the DC source, which makes the IEDs at the DC electrode shift towards higher energy, and the peaks in the IADs shift towards small angle regions. At the same time, it also decreases the ion energy at the RF electrode and enlarges the incident angles of the ions, which strike the RF electrode. 展开更多
关键词 capacitively coupled plasmas DC/RF combined driven hybrid model IEDs IADs
下载PDF
Performance Monitoring of the Data-driven Subspace Predictive Control Systems Based on Historical Objective Function Benchmark 被引量:3
19
作者 王陆 李柠 李少远 《自动化学报》 EI CSCD 北大核心 2013年第5期542-547,共6页
关键词 预测控制系统 性能监控 数据驱动 子空间 历史 基准 监视控制器 目标函数
下载PDF
Data-driven computing in elasticity via kernel regression 被引量:2
20
作者 Yoshihiro Kanno 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第6期361-365,I0003,共6页
This paper presents a simple nonparametric regression approach to data-driven computing in elasticity. We apply the kernel regression to the material data set, and formulate a system of nonlinear equations solved to o... This paper presents a simple nonparametric regression approach to data-driven computing in elasticity. We apply the kernel regression to the material data set, and formulate a system of nonlinear equations solved to obtain a static equilibrium state of an elastic structure. Preliminary numerical experiments illustrate that, compared with existing methods, the proposed method finds a reasonable solution even if data points distribute coarsely in a given material data set. 展开更多
关键词 data-driven computational mechanics model-free method Nonparametric method Kernel regression Nadaraya–Watson estimator
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部