In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios ...In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.展开更多
This paper presents the static and fatigue tests of hybrid(bonded/bolted)glass fiber reinforced polymer(GFRP)joints.Nine specimens of single-lap hybrid GFRP joints have been fabricated to study the static and fatigue ...This paper presents the static and fatigue tests of hybrid(bonded/bolted)glass fiber reinforced polymer(GFRP)joints.Nine specimens of single-lap hybrid GFRP joints have been fabricated to study the static and fatigue behaviors in the experimental campaign.The static tests of uniaxial tension loading are first conducted,from which the static ultimate bearing capacities of the joints are obtained.High-cycle fatigue tests are subsequently carried out so that the fatigue failure mode,fatigue life,and stiffness degradation of joints can be obtained.The measuring techniques including acoustic emission monitoring and three-dimensional digital image correlation have been employed in the tests to record the damage development process.The results revealed that the static strength and fatigue behavior of such thick hybrid GFRP joints were controlled by the bolted connections.The four stages of fatigue failure process are obtained from tests and acoustic emission signals analysis:cumulative damage of adhesive layer,damage of the adhesive layer,cumulative damage of GFRP plate,and damage of GFRP plate.The fatigue life and stiffness degradation can be improved by more bolts.The S-N(fatigue stress versus life)curves for the fatigue design of the single-lap hybrid GFRP joints under uniaxial tension loading are also proposed.展开更多
Many studies on fiber reinforced polymer composite bars, as a substitute for reinforcing bars, have been conducted to solve corrosion of steel in reinforced concrete structures since 1960s’. However, FRP Bars have a ...Many studies on fiber reinforced polymer composite bars, as a substitute for reinforcing bars, have been conducted to solve corrosion of steel in reinforced concrete structures since 1960s’. However, FRP Bars have a lower elastic modulus than steel rebar as a structural component of concrete structures. Material properties with brittleness fracture and low elastic modulus can be improved by combining cheaper steel than carbon or aramid fibers. In this study, prototypes of FRP Bars with inserted steel wires (i.e., “FRP Hybrid Bars”) were developed and their tensile performance was compared depending on the proportion and diameter of steel. The FRP Hybrid Bars were made by dividing them into D13 and D16 according to the diameter and proportion of inserted wires: GFRPs were combined with wires having different diameters of 0.5 mm, 1.0 mm, and 2.0 mm in the proportion of 10%, 30%, 50%, and 70%, respectively. As a result of tensile tests, the elastic modulus of FRP Hybrid Bars were improved as 20% - 190% in comparison with the fully GFRP Bars.展开更多
A novel hybrid composites wrapped rebar is developed to overcome the brittleness of fiber reinforced polymer( FRP) rebars.Theoretical and experimental studies are carried out on two types of rebars wrapped by FRP and ...A novel hybrid composites wrapped rebar is developed to overcome the brittleness of fiber reinforced polymer( FRP) rebars.Theoretical and experimental studies are carried out on two types of rebars wrapped by FRP and hybrid composites,respectively. The stress-strain curves under quasi-static loads are given. The results show that FRP or hybrid composites outside rebars improve the ultimate tensile stress and the rebar in the core improves the ductility. It is also observed that hybrid composites wrapped layer can provide higher compatibility and lower interlaminar shear stress than FRP wrapped layer.展开更多
The potential of externally applied FRP (fiber-reinforced plastic) sheets, being employed in retrofitting schemes aimed to repair and strengthen RC (reinforced concrete) structural elements damaged by prototype st...The potential of externally applied FRP (fiber-reinforced plastic) sheets, being employed in retrofitting schemes aimed to repair and strengthen RC (reinforced concrete) structural elements damaged by prototype strong earthquakes, is presented and discussed in this study. The limitation of the debonding mode of failure of these FRP sheets is highlighted and the necessity to develop efficient anchoring devices for these FRP sheets is underlined. The behavior of such a novel HAD (hybrid anchoring device) capable of anchoring CFRP (carbon fiber reinforcing plastic) sheets to RC structural elements, is presented and discussed. The behavior of the device itself was studied through a 3D non-linear numerical simulation at the preliminary design stage in order to establish certain desired features such as the ductile behavior of the device itself as well as the satisfactory performance of the FRP sheets wrapped around this device. This HAD was next applied as part of a strengthening scheme aimed to upgrade the flexural capacity of an RC bridge-type pier specimen subjected to a cyclic seismic-type loading sequence. The obtained results demonstrated an increase in the specimen's flexural capacity by 100% as well as a similar increase in its capability of dissipating energy in a ductile manner during the cyclic load sequence. Moreover, the employed 3D non-linear numerical simulation yielded reasonably good agreement between the measured and the predicted cyclic response of this specimen strengthened by CFRP layers, which were anchored by the novel HAD. The successful behavior of this novel HAD, which has been patented with No. WO2011073696, is currently being tried with a number of other retrofitting schemes employing FRP sheets externally attached on RC structural elements.展开更多
基金The National Natural Science Foundation of China(No.51108238)
文摘In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.
基金the National Natural Science Foundation of China(No.51978400)。
文摘This paper presents the static and fatigue tests of hybrid(bonded/bolted)glass fiber reinforced polymer(GFRP)joints.Nine specimens of single-lap hybrid GFRP joints have been fabricated to study the static and fatigue behaviors in the experimental campaign.The static tests of uniaxial tension loading are first conducted,from which the static ultimate bearing capacities of the joints are obtained.High-cycle fatigue tests are subsequently carried out so that the fatigue failure mode,fatigue life,and stiffness degradation of joints can be obtained.The measuring techniques including acoustic emission monitoring and three-dimensional digital image correlation have been employed in the tests to record the damage development process.The results revealed that the static strength and fatigue behavior of such thick hybrid GFRP joints were controlled by the bolted connections.The four stages of fatigue failure process are obtained from tests and acoustic emission signals analysis:cumulative damage of adhesive layer,damage of the adhesive layer,cumulative damage of GFRP plate,and damage of GFRP plate.The fatigue life and stiffness degradation can be improved by more bolts.The S-N(fatigue stress versus life)curves for the fatigue design of the single-lap hybrid GFRP joints under uniaxial tension loading are also proposed.
文摘Many studies on fiber reinforced polymer composite bars, as a substitute for reinforcing bars, have been conducted to solve corrosion of steel in reinforced concrete structures since 1960s’. However, FRP Bars have a lower elastic modulus than steel rebar as a structural component of concrete structures. Material properties with brittleness fracture and low elastic modulus can be improved by combining cheaper steel than carbon or aramid fibers. In this study, prototypes of FRP Bars with inserted steel wires (i.e., “FRP Hybrid Bars”) were developed and their tensile performance was compared depending on the proportion and diameter of steel. The FRP Hybrid Bars were made by dividing them into D13 and D16 according to the diameter and proportion of inserted wires: GFRPs were combined with wires having different diameters of 0.5 mm, 1.0 mm, and 2.0 mm in the proportion of 10%, 30%, 50%, and 70%, respectively. As a result of tensile tests, the elastic modulus of FRP Hybrid Bars were improved as 20% - 190% in comparison with the fully GFRP Bars.
基金National Natural Science Foundation of China(No.41072207)
文摘A novel hybrid composites wrapped rebar is developed to overcome the brittleness of fiber reinforced polymer( FRP) rebars.Theoretical and experimental studies are carried out on two types of rebars wrapped by FRP and hybrid composites,respectively. The stress-strain curves under quasi-static loads are given. The results show that FRP or hybrid composites outside rebars improve the ultimate tensile stress and the rebar in the core improves the ductility. It is also observed that hybrid composites wrapped layer can provide higher compatibility and lower interlaminar shear stress than FRP wrapped layer.
文摘The potential of externally applied FRP (fiber-reinforced plastic) sheets, being employed in retrofitting schemes aimed to repair and strengthen RC (reinforced concrete) structural elements damaged by prototype strong earthquakes, is presented and discussed in this study. The limitation of the debonding mode of failure of these FRP sheets is highlighted and the necessity to develop efficient anchoring devices for these FRP sheets is underlined. The behavior of such a novel HAD (hybrid anchoring device) capable of anchoring CFRP (carbon fiber reinforcing plastic) sheets to RC structural elements, is presented and discussed. The behavior of the device itself was studied through a 3D non-linear numerical simulation at the preliminary design stage in order to establish certain desired features such as the ductile behavior of the device itself as well as the satisfactory performance of the FRP sheets wrapped around this device. This HAD was next applied as part of a strengthening scheme aimed to upgrade the flexural capacity of an RC bridge-type pier specimen subjected to a cyclic seismic-type loading sequence. The obtained results demonstrated an increase in the specimen's flexural capacity by 100% as well as a similar increase in its capability of dissipating energy in a ductile manner during the cyclic load sequence. Moreover, the employed 3D non-linear numerical simulation yielded reasonably good agreement between the measured and the predicted cyclic response of this specimen strengthened by CFRP layers, which were anchored by the novel HAD. The successful behavior of this novel HAD, which has been patented with No. WO2011073696, is currently being tried with a number of other retrofitting schemes employing FRP sheets externally attached on RC structural elements.