期刊文献+
共找到351篇文章
< 1 2 18 >
每页显示 20 50 100
APPLICATION OF HYBRID GENETIC ALGORITHM IN AEROELASTIC MULTIDISCIPLINARY DESIGN OPTIMIZATION OF LARGE AIRCRAFT 被引量:2
1
作者 唐长红 万志强 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期109-117,共9页
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th... The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm. 展开更多
关键词 aeroelasticity multidisciplinary design optimization genetic/gradient-based hybrid algorithm large aircraft
下载PDF
Solving Travelling Salesman Problem with an Improved Hybrid Genetic Algorithm 被引量:4
2
作者 Bao Lin Xiaoyan Sun Sana Salous 《Journal of Computer and Communications》 2016年第15期98-106,共10页
We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expe... We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expected to obtain higher quality solutions within a reasonable computational time for TSP by perfectly integrating GA and the local search. The elitist choice strategy, the local search crossover operator and the double-bridge random mutation are highlighted, to enhance the convergence and the possibility of escaping from the local optima. The experimental results illustrate that the novel hybrid genetic algorithm outperforms other genetic algorithms by providing higher accuracy and satisfactory efficiency in real optimization processing. 展开更多
关键词 genetic algorithm hybrid Local search TSP
下载PDF
Enhanced Heap-Based Optimizer Algorithm for Solving Team Formation Problem
3
作者 Nashwa Nageh Ahmed Elshamy +2 位作者 Abdel Wahab Said Hassan Mostafa Sami Mustafa Abdul Salam 《Computers, Materials & Continua》 SCIE EI 2022年第12期5245-5268,共24页
Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many r... Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many real-world problems,such as task assignment,vehicle routing,nurse scheduling,resource allocation,and airline crew scheduling,are based on the TF problem.TF has been shown to be a Nondeterministic Polynomial time(NP)problem,and high-dimensional problem with several local optima that can be solved using efficient approximation algorithms.This paper proposes two improved swarm-based algorithms for solving team formation problem.The first algorithm,entitled Hybrid Heap-Based Optimizer with Simulated Annealing Algorithm(HBOSA),uses a single crossover operator to improve the performance of a standard heap-based optimizer(HBO)algorithm.It also employs the simulated annealing(SA)approach to improve model convergence and avoid local minima trapping.The second algorithm is the Chaotic Heap-based Optimizer Algorithm(CHBO).CHBO aids in the discovery of new solutions in the search space by directing particles to different regions of the search space.During HBO’s optimization process,a logistic chaotic map is used.The performance of the two proposed algorithms(HBOSA)and(CHBO)is evaluated using thirteen benchmark functions and tested in solving the TF problem with varying number of experts and skills.Furthermore,the proposed algorithms were compared to well-known optimization algorithms such as the Heap-Based Optimizer(HBO),Developed Simulated Annealing(DSA),Particle SwarmOptimization(PSO),GreyWolfOptimization(GWO),and Genetic Algorithm(GA).Finally,the proposed algorithms were applied to a real-world benchmark dataset known as the Internet Movie Database(IMDB).The simulation results revealed that the proposed algorithms outperformed the compared algorithms in terms of efficiency and performance,with fast convergence to the global minimum. 展开更多
关键词 Team formation problem optimization problem genetic algorithm heap-based optimizer simulated annealing hybridization method chaotic local search
下载PDF
混合白鲸优化算法求解柔性作业车间调度问题 被引量:1
4
作者 孟冠军 黄江涛 魏亚博 《计算机工程与应用》 CSCD 北大核心 2024年第12期325-333,共9页
针对柔性作业车间调度问题(flexible job-shop scheduling problem,FJSP),提出一种混合白鲸优化算法(hybrid beluga whale optimization,HBWO)对其求解,旨在最小最大化完工时间。采用既定策略改进标准白鲸优化算法(beluga whale optimiz... 针对柔性作业车间调度问题(flexible job-shop scheduling problem,FJSP),提出一种混合白鲸优化算法(hybrid beluga whale optimization,HBWO)对其求解,旨在最小最大化完工时间。采用既定策略改进标准白鲸优化算法(beluga whale optimization,BWO),加快其收敛速度;基于机器选择和工序排序问题设计双层编码方案,解决FJSP离散化问题;采用主动编码及种群初始化策略,提高求解质量;基于工序的开始和结束时间确定关键路径和关键块,注重各工序时间维度;引入贪心思想至基于关键路径的混合变邻域搜索策略中,加大勘测搜索空间及减少无效搜索;此外,引入遗传算子防止算法陷入局部最优;通过35个标准算例的仿真实验与分析,证明了算法在求解FJSP问题中具有有效性。 展开更多
关键词 柔性作业车间 白鲸优化算法 最大完工时间 离散位置转化 混合变邻域策略 贪心思想
下载PDF
混合遗传变邻域搜索算法求解柔性车间调度问题
5
作者 周伟 孙瑜 +1 位作者 李西兴 王林琳 《计算机工程与设计》 北大核心 2024年第7期2041-2049,共9页
针对考虑生产成本的柔性作业车间调度问题(flow job shop scheduling problem, FJSP),以完工时间与加工成本为优化指标,提出一种求解FJSP的混合遗传变邻域搜索算法。根据个体适应度对种群分割,结合自适应交叉概率改进子代种群产生方式;... 针对考虑生产成本的柔性作业车间调度问题(flow job shop scheduling problem, FJSP),以完工时间与加工成本为优化指标,提出一种求解FJSP的混合遗传变邻域搜索算法。根据个体适应度对种群分割,结合自适应交叉概率改进子代种群产生方式;设计两种邻域结构增强算法的局部搜索能力;提出一种基于动态交叉变异概率的优化算法流程提高求解效率。运用提出的算法求解基准实例与实际问题测试,验证了算法的有效性。 展开更多
关键词 柔性作业车间调度 加工成本 遗传算法 变邻域搜索 混合算法 动态概率 优化
下载PDF
双种群混合遗传算法求解航空复合材料柔性调度问题
6
作者 王玉芳 姚彬彬 +1 位作者 陈凡 曾亚志 《计算机工程与设计》 北大核心 2024年第10期3143-3152,共10页
考虑航空复合材料柔性车间调度中的运输约束,以最小化完工时间为目标,建立调度模型,提出一种改进的双种群混合遗传算法进行求解。根据问题特点,基于工序排序、机器选择和运输约束3个子问题,设计三层实数编码以及对应解码方案。采用混合... 考虑航空复合材料柔性车间调度中的运输约束,以最小化完工时间为目标,建立调度模型,提出一种改进的双种群混合遗传算法进行求解。根据问题特点,基于工序排序、机器选择和运输约束3个子问题,设计三层实数编码以及对应解码方案。采用混合初始化提高种群质量,进化过程中采用交叉算子执行全局搜索,为双种群设计基于机器负载平衡和变邻域的局部搜索,提高全局和局部搜索能力。与对比算法相比10个测试算例中BPRD指标取得9个最优,APRD指标全部取得最优,t检验显著性有明显差异,验证算法的优越性。将算法应用于航空复合材料车间中,实现实际生产的调度,验证算法的可行性。 展开更多
关键词 航空复合材料 柔性作业车间调度 双种群 混合遗传算法 运输约束 机器负载平衡 变邻域
下载PDF
改进遗传算法搜索动态订单下车辆路径最优问题
7
作者 李二超 张智钊 《计算机工程与应用》 CSCD 北大核心 2024年第10期353-364,共12页
滚动周期策略是当前学者利用优化算法解决动态车辆路径规划(dynamic vehicle routing planning,DVRP)问题的主要研究策略。预优化算法是基于遗传算法(genetic algorithm,GA)进行改进。GA易早熟和易陷入局部最优的特点,使解的质量往往不... 滚动周期策略是当前学者利用优化算法解决动态车辆路径规划(dynamic vehicle routing planning,DVRP)问题的主要研究策略。预优化算法是基于遗传算法(genetic algorithm,GA)进行改进。GA易早熟和易陷入局部最优的特点,使解的质量往往不能达到最好。针对此问题,在GA算法上提出了贪婪重构策略进行改进。贪婪重构遗传算法(greedy reconstruction genetic algorithm,GRGA)随机剔除每条路径固定数量的客户点,利用贪婪重构策略依次将剔除点插入到各个路径,保留成本最低的解,摒弃了完全随机的策略原则,使解可以跳出局部最优。在每次迭代之后利用变邻域下降搜索算法(variable neighborhood descent,VND)进行深度搜索,完成一次迭代。最后进行三组测试,第一组是在统一平台上采用Solomon数据集测试算法效果,第二组是把预优化改进算法与对比算法得到的数据分别进行保存,利用控制变量法在动态调度周期使用一种动态调度优化算法,分别对每个预优化算法形成的初始路径进行调度,测试改进算法的有效性,第三组是采用实际案例测试预优化算法的效果。 展开更多
关键词 时间窗 遗传算法 变邻域下降搜索算法 贪婪重构策略 滚动周期
下载PDF
基于改进粒子群算法的木材板材下料方法
8
作者 黄秀玲 陶泽 +2 位作者 尤华政 李宸 刘俊 《林业工程学报》 CSCD 北大核心 2024年第1期125-131,共7页
木材板材在家具行业应用广泛,以绿色环保、节约能源为目的的木材板材优化下料已经成为研究的热点。木材板材下料优化问题属于二维矩形下料问题,是一种具有高度计算复杂性的问题。本研究主要针对单规格木材板材进行矩形零件下料问题,在... 木材板材在家具行业应用广泛,以绿色环保、节约能源为目的的木材板材优化下料已经成为研究的热点。木材板材下料优化问题属于二维矩形下料问题,是一种具有高度计算复杂性的问题。本研究主要针对单规格木材板材进行矩形零件下料问题,在木材板材长和宽都大于零件长和宽的情况下,通过建立二维下料的数学模型,采用标准粒子群算法、变邻域搜索算法、粒子群混合变邻域搜索算法分别进行求解,并以某企业的下料实例进行分析计算。首先,利用标准粒子群算法求解单规格板材下料问题;其次,利用变邻域搜索算法求解单规格板材下料问题。在获得局部最优解的基础上改变其邻域结构再进行局部搜索,找到另一个局部最优解,如此不断迭代,直到满足算法的终止条件,获得全局最优解;最后,利用粒子群变邻域搜索混合算法求解单规格板材下料问题。针对粒子群算法局部搜索能力较差、容易过早收敛的问题和具有较好包容性的特点,将变邻域搜索的思想融入粒子群算法中,使结果更加趋向全局最优。结果表明:粒子群变邻域搜索混合算法相比粒子群算法和变邻域算法效率都有显著提升,能显著提高该木材板材的利用率,增加企业经济效益。 展开更多
关键词 木材板材 二维矩形下料问题 粒子群算法 变邻域搜索算法 粒子群混合变邻域搜索算法
下载PDF
部分充电策略下多中心混合车队联合配送路径优化
9
作者 张得志 周少宇 +2 位作者 周理昆 王煜恺 周赛琦 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第9期3552-3562,共11页
城市物流电动车与燃油车混合运输场景中,运输资源共享调度和充电策略联合优化方面存在不足。基于此,综合考虑客户时间窗、混合动力车队、电动车部分充电策略、多中心间联合配送机制和碳排放等实际因素,研究带时间窗和部分充电的多中心... 城市物流电动车与燃油车混合运输场景中,运输资源共享调度和充电策略联合优化方面存在不足。基于此,综合考虑客户时间窗、混合动力车队、电动车部分充电策略、多中心间联合配送机制和碳排放等实际因素,研究带时间窗和部分充电的多中心混合车队绿色车辆路径问题。以车辆固定成本、运输成本、充电成本、碳排放成本和时间惩罚成本之和最小化为目标构建优化模型,并设计混合改进遗传-变邻域搜索算法进行求解。基于湖南省某物流企业的实际数据进行仿真实验,验证了上述模型及算法的有效性,并从配送模式、车队配置和充电策略3个方面进行了敏感性分析。研究结果表明:1)联合配送模式有助于加强配送中心间的协同合作,促进运输资源共享调度,降低物流配送成本并减少碳排放,是一种经济环保的配送模式。2)电动车充电时间过长会影响客户时间满意度下降,且对纯电动车队而言,这一影响更为显著。3)混合车队相比纯电动车队具有更低的配送成本和更高的客户满意度,相比纯燃油车队在降低配送成本和减少碳排放方面更有优势。合理的车队配置不仅能减少企业运营成本,还可以同时兼顾客户利益和环境利益。4)在物流配送中采用部分充电策略能有效节省充电时间并提升客户服务体验。研究成果可为物流企业进行运输资源联合调度和配送方案优化决策提供参考依据。 展开更多
关键词 多中心联合配送 混合车队 部分充电策略 混合改进遗传-变邻域搜索 绿色车辆路径
下载PDF
混合进化算法求解多环节资源配置优化问题
10
作者 袁小芳 杨育辉 《计算机工程与设计》 北大核心 2024年第8期2306-2312,共7页
资源配置优化问题是制造业价值链管理的基础问题。然而,现有研究多集中在生产环节,对制造全生命周期的整体考虑不足。研究考虑多环节的制造全生命周期资源配置优化问题(MLCRAOP),旨在通过优化研发设计、生产制造、运维服务和配套设备供... 资源配置优化问题是制造业价值链管理的基础问题。然而,现有研究多集中在生产环节,对制造全生命周期的整体考虑不足。研究考虑多环节的制造全生命周期资源配置优化问题(MLCRAOP),旨在通过优化研发设计、生产制造、运维服务和配套设备供应环节的服务资源,提升全生命周期的资源配置客户满意度。将时间、成本、质量指标纳入目标函数构建整数规划模型,提出一种混合进化算法用于求解MLCRAOP。通过在设计案例上的对比实验,验证了混合进化算法具有优异的性能。 展开更多
关键词 资源配置优化 价值链管理 制造全生命周期 服务资源 混合进化算法 混沌初始化 邻域搜索
下载PDF
基于改进遗传算法的舾装件托盘多载具协同拣选方法
11
作者 张帆 郑贤勇 +1 位作者 徐靖 周磊 《造船技术》 2024年第2期13-19,23,共8页
为提升舾装件托盘的拣选效率,建立拣选过程的数学模型,提出一种基于改进遗传算法(Improved Genetic Algorithm, IGA)的舾装件托盘多载具协同拣选方法。针对遗传算法(Genetic Algorithm, GA)流程与实际拣选过程的差异,改进GA的初始化过... 为提升舾装件托盘的拣选效率,建立拣选过程的数学模型,提出一种基于改进遗传算法(Improved Genetic Algorithm, IGA)的舾装件托盘多载具协同拣选方法。针对遗传算法(Genetic Algorithm, GA)流程与实际拣选过程的差异,改进GA的初始化过程和染色体交叉方式,并对变异过程进行更贴近实际生产的修改。针对GA难以得到全局最优解的问题,采用变邻域搜索(Variable Neighborhood Search, VNS)策略降低陷入局部最优解的可能性。采用实例计算验证该算法的有效性,可优化传统舾装件托盘拣选方法。 展开更多
关键词 舾装件托盘 多载具协同 拣选方法 改进遗传算法 遗传算法 变邻域搜索
下载PDF
考虑众包场景的电动车动态需求车辆路径问题 被引量:1
12
作者 杜千 南丽君 陈彦如 《计算机集成制造系统》 EI CSCD 北大核心 2024年第7期2588-2607,共20页
针对企业自有车辆和社会车辆共同取送货的场景,以及国家节能环保的政策背景,考虑分时电价、部分充电、软时间窗、以及动态需求等因素,以最小化配送总成本为目标,建立考虑众包场景的电动车动态需求车辆路径问题(EDDVRP-CD)的两阶段整数... 针对企业自有车辆和社会车辆共同取送货的场景,以及国家节能环保的政策背景,考虑分时电价、部分充电、软时间窗、以及动态需求等因素,以最小化配送总成本为目标,建立考虑众包场景的电动车动态需求车辆路径问题(EDDVRP-CD)的两阶段整数规划模型。考虑动态需求的时效性,设计了启发式算法——改进的禁忌自适应大规模邻域搜索算法(IALNS-TS),增加了新的删除算子和修复算子,同时提出了加速策略。分别与两种算法——自适应大规模邻域搜索算法(ALNS)以及禁忌搜索算法(TS)进行对比,通过大量算例验证了IALNS-TS算法能够快速响应动态需求,并有效降低总配送费用。 展开更多
关键词 众包模式 分时电价 电动车车辆路径问题 动态需求 改进的禁忌自适应大规模邻域搜索算法
下载PDF
果蔬采后分级和预冷车辆协同调度模型与算法
13
作者 王旭坪 王悦 +1 位作者 李娅 林娜 《系统管理学报》 CSCD 北大核心 2024年第1期76-89,共14页
新兴的移动式分级、预冷技术应用于果蔬田间采后处理,有助于降低采后损耗,也催生了采后“最先一公里”冷链物流环节协同运作优化问题。以采后分级、预冷环节为例,综合考虑果蔬最佳预冷时间、先分级后预冷的服务顺序等特有协同情景,构建... 新兴的移动式分级、预冷技术应用于果蔬田间采后处理,有助于降低采后损耗,也催生了采后“最先一公里”冷链物流环节协同运作优化问题。以采后分级、预冷环节为例,综合考虑果蔬最佳预冷时间、先分级后预冷的服务顺序等特有协同情景,构建了移动式分级预冷资源协同调度优化模型。与现有模型不同,本研究考虑延迟预冷对果蔬新鲜度的特殊影响,设计了延迟预冷成本函数,在保障产品质量的同时最小化服务运作成本。设计混合遗传算法对模型进行求解,该算法融合了遗传算法与邻域搜索算法,增强混合算法的局部和全局搜索能力。其中,结合问题的双需求特点及关键协同约束,设计了基于双序列的解的表达方式、基于最佳插入策略的交叉算子以及基于三阶段邻域搜索的变异操作,以提高算法的收敛速度与求解质量。通过与标准遗传算法和变邻域搜索算法对比,验证了本文算法在求解大规模算例时可以更快收敛到更高质量的解。基于陕西省洛川县水蜜桃产业的分级预冷数据证明了模型的合理性。本研究有助于把协同运作优化思想引入果蔬采后“最先一公里”冷链物流环节,为降低我国果蔬采后损耗提供创新性解决思路。 展开更多
关键词 最先一公里 移动式分级和预冷 协同调度 混合遗传算法 邻域搜索
下载PDF
基于混合启发式算法的快递末端选址路径优化研究 被引量:1
14
作者 孙睿男 初翔 +1 位作者 陈昱 闫明宁 《计算机工程与科学》 CSCD 北大核心 2024年第1期159-169,共11页
传统快递末端配送模式存在快递网点建设冗余、派送路径重叠等问题,而共同配送模式可有效解决此类问题,因此对共同配送模式下同时收派件且收件需求为不确定情形的快递末端网点选址路径问题进行研究。首先,建立了两阶段数学优化模型,引入... 传统快递末端配送模式存在快递网点建设冗余、派送路径重叠等问题,而共同配送模式可有效解决此类问题,因此对共同配送模式下同时收派件且收件需求为不确定情形的快递末端网点选址路径问题进行研究。首先,建立了两阶段数学优化模型,引入随机机会约束来处理收件量不确定的问题。其次,设计基于遗传算法和自适应大邻域搜索算法的混合启发式算法。最后,通过数值实验表明:所设计的混合算法比传统遗传算法具有较快的收敛速度和较好的求解质量;决策者对随机需求下的优化方案风险接受程度过高或过低都会导致成本上升;随客户收派量之比的增加,快递末端配送成本呈先降低后增高的趋势;采用最近网点返回策略可有效降低企业配送成本。 展开更多
关键词 共同配送 选址路径问题 遗传算法 自适应大邻域搜索算法 快递网点
下载PDF
考虑站点换乘的地铁多车站接运公交线路优化
15
作者 郑好 曹弋 王珊 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第10期2162-2170,共9页
为了实现公交与地铁的有效接驳,提高公交系统接运效率,开展接运公交线路优化研究.考虑多个地铁站与公交站间客流的起点-终点(OD)需求与换乘特性,建立双层规划模型.上层模型的目标函数旨在使公交运营成本及乘客出行成本之和最小化,约束... 为了实现公交与地铁的有效接驳,提高公交系统接运效率,开展接运公交线路优化研究.考虑多个地铁站与公交站间客流的起点-终点(OD)需求与换乘特性,建立双层规划模型.上层模型的目标函数旨在使公交运营成本及乘客出行成本之和最小化,约束条件考虑线路的完整性、路径的合理性;下层模型为客流分配模型,以线路容量、站点换乘构建约束条件.引入精英保留策略,将邻域搜索算法与遗传算法组合,设计模型求解算法.案例分析结果表明,所设计算法的最小误差为1.6%,算法效率显著提升;与原公交线网相比,优化后公交载客量提升29%,人均出行成本降低13%.实验结果表明,所建模型基于系统最优原则,能够对多个地铁站周边的公交站进行统筹优化;优化方案在提升载客率、降低人均出行成本与提高公交系统接运效率方面优势明显. 展开更多
关键词 路线优化 改进遗传算法 邻域搜索 接运公交 站点换乘 全局优化
下载PDF
考虑充换电的模块化需求响应公交路径优化
16
作者 郭梅雪 靳文舟 巫威眺 《交通运输工程与信息学报》 2024年第3期34-51,共18页
模块车能通过中途分离与合并来调整车队容量、实现无缝换乘,兼具规模化与“门到门”灵活性优势,但其轻量化的电池设计也在一定程度上限制了车辆续航能力。为了探索模块车在需求响应公交中的应用,并解决车辆中途充电问题,本文建立了模块... 模块车能通过中途分离与合并来调整车队容量、实现无缝换乘,兼具规模化与“门到门”灵活性优势,但其轻量化的电池设计也在一定程度上限制了车辆续航能力。为了探索模块车在需求响应公交中的应用,并解决车辆中途充电问题,本文建立了模块化需求响应公交路径规划模型,优化车辆路径计划、车队编组策略、车内换乘策略以及换电和机会充电计划。针对模型特征设计了改进的自适应大邻域搜索算法,根据各车辆路径之间需要进行编组和协同交互的特点,定制化设计了车队类修复算子和能源类修复算子等。使用安徽宣城的出行数据进行实验,结果显示:与传统公交相比,模块化需求响应公交系统使乘客总出行用时降低48.81%;与车辆单独运行的方案相比,车队编组方案能够使系统总成本平均降低13.24%;相比仅充电策略,充换电结合策略能在少量增加备用电池固定成本的情况下,使能源成本减少21.09%;此外,企业可以通过调整等待时间惩罚系数来平衡企业经营成本与乘客时间成本,达到动态最优。 展开更多
关键词 综合运输 公交线路规划 自适应大邻域搜索算法 模块化自动驾驶汽车 车内换乘 充换电规划
下载PDF
作业车间调度的多工序精确联动邻域结构混合进化算法
17
作者 巴智勇 袁逸萍 +1 位作者 裴国庆 王波 《计算机集成制造系统》 EI CSCD 北大核心 2024年第2期537-552,共16页
针对作业车间调度问题,以最小化最大完工时间为优化目标,提出一种基于多工序精确联动邻域结构的混合进化算法。从理论上给出了关键块中工序无效移动的判定条件,据此设计了3对工序精确联动的邻域结构。为避免算法过早收敛,引入基于邻域... 针对作业车间调度问题,以最小化最大完工时间为优化目标,提出一种基于多工序精确联动邻域结构的混合进化算法。从理论上给出了关键块中工序无效移动的判定条件,据此设计了3对工序精确联动的邻域结构。为避免算法过早收敛,引入基于邻域惩罚的交叉父本匹配选择算子与基于动态惩罚阈值的种群更新策略。通过与其他先进算法在车间调度问题基准算例上进行对比实验,验证了所提算法的有效性与稳定性。 展开更多
关键词 作业车间调度 精确多工序联动 邻域结构 混合进化算法 多样化搜索
下载PDF
利用强化学习的改进遗传算法求解柔性作业车间调度问题
18
作者 陈祉烨 胡毅 +2 位作者 刘俊 王军 张曦阳 《科学技术与工程》 北大核心 2024年第25期10848-10856,共9页
针对传统遗传算法在解决柔性作业车间调度问题时易陷入局部最优解、参数不能智能调整、局部搜索能力差的问题,建立以最大完工时间最小为目标的柔性作业车间调度模型,并提出一种基于强化学习的改进遗传算法(reinforcement learning impro... 针对传统遗传算法在解决柔性作业车间调度问题时易陷入局部最优解、参数不能智能调整、局部搜索能力差的问题,建立以最大完工时间最小为目标的柔性作业车间调度模型,并提出一种基于强化学习的改进遗传算法(reinforcement learning improved genetic algorithm,RLIGA)求解该模型。首先,在遗传算法迭代过程中,利用强化学习动态调整关键参数。其次,引入基于工序编码距离的离散莱维飞行机制,改进求解空间。最后,引入变邻域搜索机制,提升算法的局部开发能力。使用PyCharm运行Brandimarte算例,验证算法的求解性能,实验证明所提算法求解效率较高,跳出局部最优能力更强,求解结果更好。 展开更多
关键词 强化学习 遗传算法 离散莱维飞行 工序编码距离 变邻域搜索
下载PDF
基于灰数描述的不确定工时作业车间E/T调度优化
19
作者 陈开院 熊禾根 《组合机床与自动化加工技术》 北大核心 2024年第4期187-192,共6页
针对不确定加工时间的作业车间调度问题,考虑每个工件的交货期窗口,旨在最小化工件提前/拖期成本和机器空闲成本。分别采用基本遗传算法和混合遗传算法进行求解,并比较两种算法的求解质量。通过灰色理论和模糊数理论对不确定加工时间分... 针对不确定加工时间的作业车间调度问题,考虑每个工件的交货期窗口,旨在最小化工件提前/拖期成本和机器空闲成本。分别采用基本遗传算法和混合遗传算法进行求解,并比较两种算法的求解质量。通过灰色理论和模糊数理论对不确定加工时间分别建立调度模型,分析两种模型的优化程度和稳定性。结果表明,与基本遗传算法相比,引入按指定邻域结构进行局部搜索的混合遗传算法具有更好收敛能力;与模糊数方式相比,采用灰色理论能够更好地描述不确定加工时间,且在求解过程中也具有更好的适应性和稳定性。 展开更多
关键词 不确定加工时间 交货期窗口 提前/拖期 灰色理论 混合遗传算法 局部搜索
下载PDF
考虑临时配送的动态车辆路径规划研究
20
作者 李盛威 童泽平 《物流科技》 2024年第8期83-88,共6页
文章研究了客户请求的配送车辆呈动态化的车辆路径规划问题,在该问题中,客户请求的动态化可能在配送计划制定时已知,也可能在任一配送时间节点更新;配送车辆的动态化体现在管理配送的公司配备固定的车队进行配送,也有临时的司机通过接... 文章研究了客户请求的配送车辆呈动态化的车辆路径规划问题,在该问题中,客户请求的动态化可能在配送计划制定时已知,也可能在任一配送时间节点更新;配送车辆的动态化体现在管理配送的公司配备固定的车队进行配送,也有临时的司机通过接单形式提供服务,且临时配送与对应时间窗相关联。文章的研究目的是确定分配成本最小化的分配计划,分配成本由常规车辆成本、支付给接单司机补偿款项和罚款成本共同构成。该问题研究基于大邻域搜索算法和遗传算法设计优化算子,探索处理动态请求并实时调整路径规划的分配计划。通过计算研究与灵敏度分析评估算法性能,确定其解决动态问题的可行性与优势。 展开更多
关键词 动态车辆路径规划 大邻域搜索算法 遗传算法 优化算法
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部