The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far ...The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.展开更多
Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies s...Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies simultaneously.In this study,an innovative hybrid gradient vector fields for path-following guidance(HGVFs-PFG)algorithm is proposed to control fixed-wing UAVs to follow a generated guidance path and oriented target curves in three-dimensional space,which can be any combination of straight lines,arcs,and helixes as motion primitives.The algorithm aids the creation of vector fields(VFs)for these motion primitives as well as the design of an effective switching strategy to ensure that only one VF is activated at any time to ensure that the complex paths are followed completely.The strategies designed in earlier studies have flaws that prevent the UAV from following arcs that make its turning angle too large.The proposed switching strategy solves this problem by introducing the concept of the virtual way-points.Finally,the performance of the HGVFs-PFG algorithm is verified using a reducedorder autopilot and four representative simulation scenarios.The simulation considers the constraints of the aircraft,and its results indicate that the algorithm performs well in following both lateral and longitudinal control,particularly for curved paths.In general,the proposed technical method is practical and competitive.展开更多
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
By reviewing the primal-dual hybrid gradient algorithm(PDHG)pro-posed by He,You and Yuan(SIAM J.Image Sci.,7(4)(2014),pp.2526–2537),in this paper we introduce four improved schemes for solving a class of saddle-point...By reviewing the primal-dual hybrid gradient algorithm(PDHG)pro-posed by He,You and Yuan(SIAM J.Image Sci.,7(4)(2014),pp.2526–2537),in this paper we introduce four improved schemes for solving a class of saddle-point problems.Convergence properties of the proposed algorithms are ensured based on weak assumptions,where none of the objective functions are assumed to be strongly convex but the step-sizes in the primal-dual updates are more flexible than the pre-vious.By making use of variational analysis,the global convergence and sublinear convergence rate in the ergodic/nonergodic sense are established,and the numer-ical efficiency of our algorithms is verified by testing an image deblurring problem compared with several existing algorithms.展开更多
In this paper, we present a new hybrid conjugate gradient algorithm for unconstrained optimization. This method is a convex combination of Liu-Storey conjugate gradient method and Fletcher-Reeves conjugate gradient me...In this paper, we present a new hybrid conjugate gradient algorithm for unconstrained optimization. This method is a convex combination of Liu-Storey conjugate gradient method and Fletcher-Reeves conjugate gradient method. We also prove that the search direction of any hybrid conjugate gradient method, which is a convex combination of two conjugate gradient methods, satisfies the famous D-L conjugacy condition and in the same time accords with the Newton direction with the suitable condition. Furthermore, this property doesn't depend on any line search. Next, we also prove that, moduling the value of the parameter t,the Newton direction condition is equivalent to Dai-Liao conjugacy condition.The strong Wolfe line search conditions are used.The global convergence of this new method is proved.Numerical comparisons show that the present hybrid conjugate gradient algorithm is the efficient one.展开更多
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th...The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.展开更多
Based on the analysis of the advantages and disadvantages of some vertical coordinates applied in the calculation of the Changjiang diluted water (CDW), a new hybrid vertical coordinate is designed, which uses σ co...Based on the analysis of the advantages and disadvantages of some vertical coordinates applied in the calculation of the Changjiang diluted water (CDW), a new hybrid vertical coordinate is designed, which uses σ coordinate for current and σ-z coordinate for salinity. To combine the current and salinity, the Eulerian-Lagrangian method is used for the salinity calculation, and the baroclinic pressure gradient (BPG) is calculated on the salinity sited layers. The new hybrid vertical coordinate is introduced to the widely used model of POM (Princeton Ocean Model) to make a new model of POM-σ-z. The BPG calculations of an ideal case show that POM-σ-z model brings smaller error than POM model does. The simulations of CDW also show that POM-σ-z model is better than POM model on simulating the salinity and its front.展开更多
The hybrid finite analytic(HFA) method is a kind of numerical scheme in rectangular element. In order to simulate the shallow circulation in irregular bathymetry by HFA scheme, the model in sigma coordinate system was...The hybrid finite analytic(HFA) method is a kind of numerical scheme in rectangular element. In order to simulate the shallow circulation in irregular bathymetry by HFA scheme, the model in sigma coordinate system was obtained. The model has been tested against three cases: 1) Wind induced circulation; 2) Density driven circulation and 3) Seiche oscillation. The results obtained in the present study compare well with those obtained from the corresponding analytical solutions under idealized for the above three cases. The hybrid finite analytic method and the circulation model in sigma coordinate system can be used calculate the flow and water quality in estuaries and coastal waters.展开更多
This study presents a new method for designing algorithm for a triplet lens with one or two elements that are made of a gradient index medium (GRIN). This method is based upon considering a well-known designed triplet...This study presents a new method for designing algorithm for a triplet lens with one or two elements that are made of a gradient index medium (GRIN). This method is based upon considering a well-known designed triplet lens (Cooke triplet lens) as a target lens for designing of the Hybrid Triplet Lens (HTL). Our design was based upon keeping the total optical path length for the axial ray fixed for each case of design. The results showed that several designs for the HTL have the same total powers of the target lens. These designs depend on the variation of the GRIN element parameter values and the order of the GRIN element position in the system. These HTL designs have been evaluated by considering several optical merit functions, i.e., the root mean square (RMS) spot radius, wave front error and the spherical aberration. To achieve the optimal design, these functions are compared for the target lens and the HTL designs through a wide range of field angles.展开更多
With the expansion of electricity demand,transmission corridors are becoming scarce.AC and DC circuits running parallel to each other and sharing the same right-of-way or even the same tower become a possible option.D...With the expansion of electricity demand,transmission corridors are becoming scarce.AC and DC circuits running parallel to each other and sharing the same right-of-way or even the same tower become a possible option.Due to the existence of the adjacent line,space electromagnetic field and corona of another line may be changed.Different characteristics of two line types make the electromagnetic field of transmission corridors become more complex.Hybrid line is viewed as a whole.The calculation contains surface gradient,ground level electric field,radio interference and audible noise.Interaction between the two line types is considered.The calculation results show that the interaction is mainly concentrated in the inner corridor.In the role of DC electric field,AC electric field is no longer symmetrical and ground level electric field is significantly enhanced.Under the negative DC voltage,the positive corona of the waveform is significantly strengthened,and it is inhibited under the positive DC voltage.It is better to erect the positive DC line near AC line.展开更多
A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually...A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.展开更多
Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E and {An}n∈N be a family of monotone and Lipschitz continuos mappings of C into E*. In this article, we consider th...Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E and {An}n∈N be a family of monotone and Lipschitz continuos mappings of C into E*. In this article, we consider the improved gradient method by the hybrid method in mathematical programming [i0] for solving the variational inequality problem for {AN} and prove strong convergence theorems. And we get several results which improve the well-known results in a real 2-uniformly convex and uniformly smooth Banach space and a real Hilbert space.展开更多
基金jointly supported by Young Scientists Cultivation Fund Project of Harbin Engineering University(79000013/003)the Mount Taishan Industrial Leading Talent Project+1 种基金the Great and Special Project under Grant KJGG-2022-0104 of CNOOC Limitedthe National Natural Science Foundation of China(42006064,42106070,42074138)。
文摘The low-wavenumber components in the gradient of full waveform inversion(FWI)play a vital role in the stability of the inversion.However,when FWI is implemented in some high frequencies and current models are not far away from the real velocity model,an excessive number of low-wavenumber components in the gradient will also reduce the convergence rate and inversion accuracy.To solve this problem,this paper firstly derives a formula of scattering angle weighted gradient in FWI,then proposes a hybrid gradient.The hybrid gradient combines the conventional gradient of FWI with the scattering angle weighted gradient in each inversion frequency band based on an empirical formula derived herein.Using weighted hybrid mode,we can retain some low-wavenumber components in the initial lowfrequency inversion to ensure the stability of the inversion,and use more high-wavenumber components in the high-frequency inversion to improve the convergence rate.The results of synthetic data experiment demonstrate that compared to the conventional FWI,the FWI based on the proposed hybrid gradient can effectively reduce the low-wavenumber components in the gradient under the premise of ensuring inversion stability.It also greatly enhances the convergence rate and inversion accuracy,especially in the deep part of the model.And the field marine seismic data experiment also illustrates that the FWI based on hybrid gradient(HGFWI)has good stability and adaptability.
基金the support of the National Natural Science Foundation of China under Grant No.62076204 and Grant No.62006193in part by the Postdoctoral Science Foundation of China under Grants No.2021M700337in part by the Fundamental Research Funds for the Central Universities under Grant No.3102019ZX016。
文摘Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies simultaneously.In this study,an innovative hybrid gradient vector fields for path-following guidance(HGVFs-PFG)algorithm is proposed to control fixed-wing UAVs to follow a generated guidance path and oriented target curves in three-dimensional space,which can be any combination of straight lines,arcs,and helixes as motion primitives.The algorithm aids the creation of vector fields(VFs)for these motion primitives as well as the design of an effective switching strategy to ensure that only one VF is activated at any time to ensure that the complex paths are followed completely.The strategies designed in earlier studies have flaws that prevent the UAV from following arcs that make its turning angle too large.The proposed switching strategy solves this problem by introducing the concept of the virtual way-points.Finally,the performance of the HGVFs-PFG algorithm is verified using a reducedorder autopilot and four representative simulation scenarios.The simulation considers the constraints of the aircraft,and its results indicate that the algorithm performs well in following both lateral and longitudinal control,particularly for curved paths.In general,the proposed technical method is practical and competitive.
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
基金The work is partly supported by the NSF of China(No.11671318)the NSF of Fujian province(No.2016J01028).
文摘By reviewing the primal-dual hybrid gradient algorithm(PDHG)pro-posed by He,You and Yuan(SIAM J.Image Sci.,7(4)(2014),pp.2526–2537),in this paper we introduce four improved schemes for solving a class of saddle-point problems.Convergence properties of the proposed algorithms are ensured based on weak assumptions,where none of the objective functions are assumed to be strongly convex but the step-sizes in the primal-dual updates are more flexible than the pre-vious.By making use of variational analysis,the global convergence and sublinear convergence rate in the ergodic/nonergodic sense are established,and the numer-ical efficiency of our algorithms is verified by testing an image deblurring problem compared with several existing algorithms.
文摘In this paper, we present a new hybrid conjugate gradient algorithm for unconstrained optimization. This method is a convex combination of Liu-Storey conjugate gradient method and Fletcher-Reeves conjugate gradient method. We also prove that the search direction of any hybrid conjugate gradient method, which is a convex combination of two conjugate gradient methods, satisfies the famous D-L conjugacy condition and in the same time accords with the Newton direction with the suitable condition. Furthermore, this property doesn't depend on any line search. Next, we also prove that, moduling the value of the parameter t,the Newton direction condition is equivalent to Dai-Liao conjugacy condition.The strong Wolfe line search conditions are used.The global convergence of this new method is proved.Numerical comparisons show that the present hybrid conjugate gradient algorithm is the efficient one.
基金Supported by the National Natural Science Foundation of China(1117202591116)
文摘The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.
文摘Based on the analysis of the advantages and disadvantages of some vertical coordinates applied in the calculation of the Changjiang diluted water (CDW), a new hybrid vertical coordinate is designed, which uses σ coordinate for current and σ-z coordinate for salinity. To combine the current and salinity, the Eulerian-Lagrangian method is used for the salinity calculation, and the baroclinic pressure gradient (BPG) is calculated on the salinity sited layers. The new hybrid vertical coordinate is introduced to the widely used model of POM (Princeton Ocean Model) to make a new model of POM-σ-z. The BPG calculations of an ideal case show that POM-σ-z model brings smaller error than POM model does. The simulations of CDW also show that POM-σ-z model is better than POM model on simulating the salinity and its front.
文摘The hybrid finite analytic(HFA) method is a kind of numerical scheme in rectangular element. In order to simulate the shallow circulation in irregular bathymetry by HFA scheme, the model in sigma coordinate system was obtained. The model has been tested against three cases: 1) Wind induced circulation; 2) Density driven circulation and 3) Seiche oscillation. The results obtained in the present study compare well with those obtained from the corresponding analytical solutions under idealized for the above three cases. The hybrid finite analytic method and the circulation model in sigma coordinate system can be used calculate the flow and water quality in estuaries and coastal waters.
文摘This study presents a new method for designing algorithm for a triplet lens with one or two elements that are made of a gradient index medium (GRIN). This method is based upon considering a well-known designed triplet lens (Cooke triplet lens) as a target lens for designing of the Hybrid Triplet Lens (HTL). Our design was based upon keeping the total optical path length for the axial ray fixed for each case of design. The results showed that several designs for the HTL have the same total powers of the target lens. These designs depend on the variation of the GRIN element parameter values and the order of the GRIN element position in the system. These HTL designs have been evaluated by considering several optical merit functions, i.e., the root mean square (RMS) spot radius, wave front error and the spherical aberration. To achieve the optimal design, these functions are compared for the target lens and the HTL designs through a wide range of field angles.
文摘With the expansion of electricity demand,transmission corridors are becoming scarce.AC and DC circuits running parallel to each other and sharing the same right-of-way or even the same tower become a possible option.Due to the existence of the adjacent line,space electromagnetic field and corona of another line may be changed.Different characteristics of two line types make the electromagnetic field of transmission corridors become more complex.Hybrid line is viewed as a whole.The calculation contains surface gradient,ground level electric field,radio interference and audible noise.Interaction between the two line types is considered.The calculation results show that the interaction is mainly concentrated in the inner corridor.In the role of DC electric field,AC electric field is no longer symmetrical and ground level electric field is significantly enhanced.Under the negative DC voltage,the positive corona of the waveform is significantly strengthened,and it is inhibited under the positive DC voltage.It is better to erect the positive DC line near AC line.
基金supported by the Innovation Foundation for Graduates in National University of Defense Technology,China (GrantNo.B080702)
文摘A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.
文摘Let C be a nonempty closed convex subset of a 2-uniformly convex and uniformly smooth Banach space E and {An}n∈N be a family of monotone and Lipschitz continuos mappings of C into E*. In this article, we consider the improved gradient method by the hybrid method in mathematical programming [i0] for solving the variational inequality problem for {AN} and prove strong convergence theorems. And we get several results which improve the well-known results in a real 2-uniformly convex and uniformly smooth Banach space and a real Hilbert space.