Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea...Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.展开更多
The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks c...The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies(EMS).Therefore,a series hybrid system is constructed based on a 100-ton mining dump truck in this paper.And inspired by the dynamic programming(DP)algorithm,a predictive equivalent consumption minimization strategy(P-ECMS)based on the DP optimization result is proposed.Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm,the P-ECMS strategy performs real-time stage parameter optimization to obtain the optimal equivalent factor(EF).Finally,applying the equivalent consumption minimization strategy(ECMS)realizes real-time control.The simulation results show that the equivalent fuel consumption of the P-ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km,which is 10.9%less than that of the common CDCS strategy(169.3 L/100 km),and achieves 99.47%of the fuel saving effect of the DP strategy(150 L/100 km).展开更多
In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven...In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.展开更多
After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy ...After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy recovery system is discussed,which is validated and evaluated by simulation.The simulation results show that the proposed control strategy can achieve balance of the power and keep the state of charge(SOC) of ultra capacitor in a reasonable range,and the fuel consumption can be reduced by about 20.8% compared with the conventional diesel forklift.Finally,the feasibility of the simulation results is experimentally verified based on the lifting energy recovery system.展开更多
Increasing the power density and overload capability of the energy-supply units(ESUs)is always one of the most challenging tasks in developing and deploying legged vehicles,especially for heavy-duty legged vehicles,in...Increasing the power density and overload capability of the energy-supply units(ESUs)is always one of the most challenging tasks in developing and deploying legged vehicles,especially for heavy-duty legged vehicles,in which significant power fluctuations in energy supply exist with peak power several times surpassing the average value.Applying ESUs with high power density and high overload can compactly ensure fluctuating power source supply on demand.It can avoid the ultra-high configuration issue,which usually exists in the conventional lithium-ion battery-based or engine-generator-based ESUs.Moreover,it dramatically reduces weight and significantly increases the loading and endurance capabilities of the legged vehicles.In this paper,we present a hybrid energy-supply unit for a heavy-duty legged vehicle combining the discharge characteristics of lithium-ion batteries and peak energy release/absorption characteristics of supercapacitors to adapt the ESU to high overload power fluctuations.The parameters of the lithium-ion battery pack and supercapacitor pack inside the ESU are optimally matched using the genetic algorithm based on the energy consumption model of the heavy-duty legged vehicle.The experiment results exhibit that the legged vehicle with a weight of 4.2 tons can walk at the speed of 5 km/h in a tripod gait under a reduction of 35.39%in weight of the ESU compared to the conventional lithium-ion battery-based solution.展开更多
基金Supported by International Technology Cooperation Program of Science and Technology Commission of Shanghai Municipality of China(Grant No.21160710600)National Nature Science Foundation of China(Grant No.52372393)Shanghai Pujiang Program of China(Grant No.21PJD075).
文摘Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.
文摘The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies(EMS).Therefore,a series hybrid system is constructed based on a 100-ton mining dump truck in this paper.And inspired by the dynamic programming(DP)algorithm,a predictive equivalent consumption minimization strategy(P-ECMS)based on the DP optimization result is proposed.Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm,the P-ECMS strategy performs real-time stage parameter optimization to obtain the optimal equivalent factor(EF).Finally,applying the equivalent consumption minimization strategy(ECMS)realizes real-time control.The simulation results show that the equivalent fuel consumption of the P-ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km,which is 10.9%less than that of the common CDCS strategy(169.3 L/100 km),and achieves 99.47%of the fuel saving effect of the DP strategy(150 L/100 km).
基金supported by the National Natural Science Foundation of China(No.12172226)。
文摘In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers.
基金Project(2013BAF07B02)supported by National Science and Technology Support Program of China
文摘After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy recovery system is discussed,which is validated and evaluated by simulation.The simulation results show that the proposed control strategy can achieve balance of the power and keep the state of charge(SOC) of ultra capacitor in a reasonable range,and the fuel consumption can be reduced by about 20.8% compared with the conventional diesel forklift.Finally,the feasibility of the simulation results is experimentally verified based on the lifting energy recovery system.
基金supported in part by the National Key R&D Program of China under Grant No.2019YFB1309502.
文摘Increasing the power density and overload capability of the energy-supply units(ESUs)is always one of the most challenging tasks in developing and deploying legged vehicles,especially for heavy-duty legged vehicles,in which significant power fluctuations in energy supply exist with peak power several times surpassing the average value.Applying ESUs with high power density and high overload can compactly ensure fluctuating power source supply on demand.It can avoid the ultra-high configuration issue,which usually exists in the conventional lithium-ion battery-based or engine-generator-based ESUs.Moreover,it dramatically reduces weight and significantly increases the loading and endurance capabilities of the legged vehicles.In this paper,we present a hybrid energy-supply unit for a heavy-duty legged vehicle combining the discharge characteristics of lithium-ion batteries and peak energy release/absorption characteristics of supercapacitors to adapt the ESU to high overload power fluctuations.The parameters of the lithium-ion battery pack and supercapacitor pack inside the ESU are optimally matched using the genetic algorithm based on the energy consumption model of the heavy-duty legged vehicle.The experiment results exhibit that the legged vehicle with a weight of 4.2 tons can walk at the speed of 5 km/h in a tripod gait under a reduction of 35.39%in weight of the ESU compared to the conventional lithium-ion battery-based solution.