期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Quantifying Contribution of Recycled Moisture to Precipitation in Temperate Glacier Region,Southeastern Tibetan Plateau,China
1
作者 MA Yanwei PU Tao +2 位作者 SHI Xiaoyi MA Xinggang YU Hongmei 《Chinese Geographical Science》 SCIE CSCD 2024年第4期764-776,共13页
Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is t... Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is the closest ocean glacier area to the equator in Eurasia.Daily precipitation samples were collected from 2017 to 2018 in Lijiang to quantify the effect of sub-cloud evaporation and recycled moisture on precipitation combined with the d-excess model during monsoon and non-monsoon periods.The results indicated that the d-excess values of precipitation fluctuated between–35.6‰and 16.0‰,with an arithmetic mean of 3.5‰.The local meteoric water line(LMWL)wasδD=7.91δ^(18)O+2.50,with a slope slightly lower than the global meteoric water line(GMWL).Subcloud evaporation was higher during the non-monsoon season than during the monsoon season.It tended to peak in March and was primarily influenced by the relative humidity.The source of the water vapour affected the proportion of recycled moisture.According to the results of the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,the main sources of water vapour in Lijiang area during the monsoon period were the southwest and southeast monsoons.During the non-monsoon period,water vapour was transported by a southwesterly flow.The recycled moisture in Lijiang area between March and October 2017 was 10.62%.Large variations were observed between the monsoon and non-monsoon seasons,with values of 5.48%and 25.65%,respectively.These differences were primarily attributed to variations in the advection of water vapour.The recycled moisture has played a supplementary role in the precipitation of Lijiang area. 展开更多
关键词 recycled moisture stable isotope PRECIPITATION d-excess hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model southeastern Tibetan Plateau China
下载PDF
On the Nature of Caspian Clouds 被引量:1
2
作者 Rashedi SHAHNAZ Mohammadi GOLAMHASAN +4 位作者 Jahanbakhshasl SAEED Khorshiddoust ALI MOHAMMAD Sorooshian ARMIN Dmitrovic SANJA Tajbar SAPNA 《Journal of Meteorological Research》 SCIE CSCD 2023年第2期262-272,共11页
Caspian clouds(CCs)are formed between the southern coast of the Caspian Sea and the Alborz Mountains.The purpose of this study is to identify characteristics of CCs using aerosol,cloud,and meteorological data from Mod... Caspian clouds(CCs)are formed between the southern coast of the Caspian Sea and the Alborz Mountains.The purpose of this study is to identify characteristics of CCs using aerosol,cloud,and meteorological data from ModernEra Retrospective analysis for Research and Applications version 2(MERRA-2),Moderate Resolution Imaging Spectroradiometer(MODIS),and ECMWF Reanalysis version 5(ERA5)during 2000–2020.During this period,we identified and investigated 636 days with CCs.The results indicated that the frequency(%)of these clouds was higher in the summer than in other seasons because synoptic system activity varies between hot and cold periods.The hot season with the beginning of high-pressure subtropical Azores activity and the formation of a stable atmosphere in northern Iran leads to more frequent occurrence of CCs.These clouds are mainly the low-and middle-level clouds in the region,e.g.,stratus and altocumulus.CCs resulted in 13.9%of annual rainfall,and 55.9%and 18.7%of the summer and autumn rainfall,respectively,relative to total rainfall from all cloud types in the study region.In the multivariate regression analysis,CC precipitation exhibited a strong positive relationship with the cloud water path(CWP),cloud optical thickness(COT),and cloud effective radius(CER).A comparison of the mean and standard deviation of aerosol optical thickness(AOT)and aerosol index(AI)for CC and non-CC days did not show a significant difference.Examination of the synoptic patterns showed that the main factors in the formation of CCs are the specific environmental conditions of the region and the orographic lift of stable air masses.The Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model indicated that the source of moisture for the formation of CCs was largely the Caspian Sea. 展开更多
关键词 Caspian clouds south coast of the Caspian Sea Moderate Resolution Imaging Spectroradiometer(MODIS) aerosol orographic lift hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model
原文传递
Analysis of Paths and Sources of Moisture for the South China Rainfall during the Presummer Rainy Season of 1979–2014 被引量:11
3
作者 Yangruixue CHEN Yali LUO 《Journal of Meteorological Research》 SCIE CSCD 2018年第5期744-757,共14页
The paths and sources of moisture supplied to South China during two periods of the presummer rainy season (April-June) of 1979-2014, i.e., before and after the onset of the summer monsoon over the South China Sea ... The paths and sources of moisture supplied to South China during two periods of the presummer rainy season (April-June) of 1979-2014, i.e., before and after the onset of the summer monsoon over the South China Sea (SCS), are investigated by using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. During the premonsoon-onset period, the moisture transport trajectories are clustered into 6 groups, with four ocean-originating paths providing 83.9% and two continent-originating paths (originating over Lake Baikal and the Persian Gulf) con- tributing the remaining 16.1% of the total moisture. The two Pacific-originating paths, from the western Pacific Ocean and the East China Sea, combined account for about 46%, the SCS-originating path contributes about 24.3%, while the Bay of Bengal-originating path accounts for 13.6% of the total moisture over South China. The trajectories during the postmonsoon-onset period are clustered into 4 groups, with three southwesterly paths (from the Arabian Sea, the central Indian Ocean, and the western Indian Ocean, respectively) accounting for more than 76% and the sole Pacific-originating path accounting for 23.8% of the total moisture. The formation of the moisture transport tra-jectories is substantially affected by the topography, especially the Tibetan Plateau and the Indian and Indo-China Peninsulas. The SCS region contributes the most moisture during both periods (35.3% and 31.1%). The Pacific Ocean is ranked second during the former period (about 21.0%) but its contribution is reduced to 5.0% during the lat-ter period, while the contribution from the Bay of Bengal and the Indian Ocean combined increases from 17.1% to 43.2%. 展开更多
关键词 presummer rainy season South China the hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model water vapor path moisture source
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部