Conventional ball bearing reaction wheel used to control the attitude of spacecraft can't absorb the centrifugal force caused by imbalance of the wheel rotor,and there will be a torque spike at zero speed,which serio...Conventional ball bearing reaction wheel used to control the attitude of spacecraft can't absorb the centrifugal force caused by imbalance of the wheel rotor,and there will be a torque spike at zero speed,which seriously influences the accuracy and stability of spacecraft attitude control.Compared with traditional ball-bearing wheel,noncontact and no lubrication are the remarkable features of the magnetic bearing reaction wheel,and which can solve the high precision problems of wheel.In general,two radial magnetic bearings are needed in magnetic bearing wheel,and the design results in a relatively large axial dimension and smaller momentum-to-mass ratios.In this paper,a new type of magnetic bearing reaction wheel(MBRW) is introduced for satellite attitude control,and a novel integrated radial hybrid magnetic bearing(RHMB) with permanent magnet bias is designed to reduce the mass and minimize the size of the MBRW,etc.The equivalent magnetic circuit model for the RHMB is presented and a solution is found.The stiffness model is also presented,including current stiffness,position negative stiffness,as well as tilting current stiffness,tilting angular position negative stiffness,force and moment equilibrium equations.The design parameters of the RHMB are given according to the requirement of the MBRW with angular momentum of 30 N ? m ? s when the rotation speed of rotor reaches to 5 kr/min.The nonlinearity of the RHMB is shown by using the characteristic curves of force-control current-position,current stiffness,position stiffness,moment-control current-angular displacement,tilting current stiffness and tilting angular position stiffness considering all the rotor position within the clearance space and the control current.The proposed research ensures the performance of the radial magnetic bearing with permanent magnet bias,and provides theory basis for design of the magnetic bearing wheel.展开更多
As there is no need of permanent magnet(PM)material and only silicon steel sheet required on the rotor,synchronous reluctance machine(SynRM)can be used for many applications and draws a great research interest.For the...As there is no need of permanent magnet(PM)material and only silicon steel sheet required on the rotor,synchronous reluctance machine(SynRM)can be used for many applications and draws a great research interest.For the SynRM,the torque ripple is a big issue and a great of work could been done on reducing it.In this paper,asymmetrical magnetic flux barriers in the SynRM rotor were studied comprehensively,including angle and width of each layer and each side of the magnetic barrier.The SynRMb with asymmetrical and parallel magnetic flux barrier was found as the best way to design SynRM based on the multi-objective design optimization method.Moreover,each parameter was studied to show the design rule of the asymmetrical magnetic flux barrier.As the average torque will be reduced with the asymmetrical barrier is used,the grain-oriented silicon steel is used on stator teeth of the SynRMb(SynRMbG)was proposed and studied.The analysis results show that the proposed new method can make the SynRM have better performance.展开更多
Magnetic properties and intergranular action in bonded hybrid magnets,based on NdFeB and strontium ferrite powders were investigated.The long-range magnetostatic interaction and short-range exchange coupling interacti...Magnetic properties and intergranular action in bonded hybrid magnets,based on NdFeB and strontium ferrite powders were investigated.The long-range magnetostatic interaction and short-range exchange coupling interaction existed simultaneously in bonded hybrid magnets,and neither of them could be neglected.Some magnetic property parameters of hybrid magnets could be approximately obtained by adding the hysteresis loops of two magnets pro rata.展开更多
The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellit...The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellites.Compared with the conventional flywheel,P&A MSFW has more rotation degrees of freedom(DOFs)since the rotor is suspended by magnetic bearings,and thus requires more efficient controllers.A modified sliding mode control law(SMC)to our novel nonlinear and coupled system is presented,which is interrupted by inertia matrix uncertainties and external disturbances.SMC law via Lyapunov method is improved,and a fuzzy control scheme is used to attenuate the chatting and control attitude accuracy and maintain the robustness of SMC.Simulation results are provided to illustrate the efficiency of our model by using our control law.展开更多
This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering the...This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering thermal radiation, suction, and magnetic boundary conditions. The nanofluid is made of water with copper and MWCNTs as nanoparticles. The equations are transformed into nonlinear ODEs and solved numerically. The model’s accuracy is confirmed by comparing it with published data. Results show that fluid velocity increases, temperature decreases, and concentration increases with the curvature radius parameter. The hybrid nanofluid is more sensitive to magnetic field changes in velocity, while the nanofluid is more sensitive to magnetic boundary coefficient changes. These insights can optimize heat and mass transfer in industrial processes like chemical reactors and wastewater treatment.展开更多
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur...A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.展开更多
The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the tw...The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.展开更多
Mathematical models are disappointing due to uneven distribution of the air gap magnetic field and significant un- modeled dynamics in magnetic bearing systems. The effectiveness of control deteriorates based on an in...Mathematical models are disappointing due to uneven distribution of the air gap magnetic field and significant un- modeled dynamics in magnetic bearing systems. The effectiveness of control deteriorates based on an inaccurate mathematical model, creating slow response speed and high jitter. To solve these problems, a model-free adaptive control (MFAC) scheme is proposed for a three-degree-of-freedom hybrid magnetic bearing (3-DoF HMB) control system. The scheme for 3-DoF HMB depends only on the control current and the objective balanced position, and it does not involve any model information. The design process of a parameter estimation algorithm is model-free, based directly on pseudo-partial-derivative (PPD) derived online from the input and output data information. The rotor start-of-suspension position of the HMB is regulated by auxiliary bearings with different inner diameters, and two kinds of operation situations (linear and nonlinear areas) are present to analyze the validity of MFAC in detail. Both simulations and experiments demonstrate that the proposed MFAC scheme handles the 3-DoF HMB control system with start-of-suspension response speed, smaller steady state error, and higher stability.展开更多
The permanent magnet electromagnetic hybridmagnet (PEHM) has the advantages of low energy consumptionand a large suspension air gap. In this study, an unbalancedPEHM structure is proposed, which combines the advantage...The permanent magnet electromagnetic hybridmagnet (PEHM) has the advantages of low energy consumptionand a large suspension air gap. In this study, an unbalancedPEHM structure is proposed, which combines the advantages ofthe previous hybrid magnet structure. First, by establishing themagnetic circuit model of the new hybrid magnet structure, theinfluence of magnetic field distribution on the working magneticcircuit of the magnet is analyzed, and the method of magneticforce correction calculation of the new structure magnet isgiven. Then, the validity of the magnetic calculation method isverified by the 3D finite element method (FEM). Furthermore, theaverage suspension power force ratio is used as the optimizationgoal, and the system parameters of the hybrid magnet under aworking air gap of 6–10 mm and a load condition of 15000–20000 N are optimized by a genetic algorithm. Compared withthe previous hybrid magnet, the optimized hybrid magnet systemcan maintain lower power consumption under comprehensiveworking conditions.展开更多
Discusses the interval between laminations in a permanent magnet inductor motor which makes the air gap magnetic field produced by the permanent magnet very uneven in the axial direction, and limits the performance of...Discusses the interval between laminations in a permanent magnet inductor motor which makes the air gap magnetic field produced by the permanent magnet very uneven in the axial direction, and limits the performance of a motor. Proposes a hybrid magnetic circuit multi couple motor to compensate for the uneven air gap magnetic field, thereby improving the performance of a motor.展开更多
This paper proposes a type of flux-switching permanent magnet(FSPM)motor,where the design concept of the hybrid permanent magnets(HPM)and the compound rotor are incorporated into the motor design.In such design,the pr...This paper proposes a type of flux-switching permanent magnet(FSPM)motor,where the design concept of the hybrid permanent magnets(HPM)and the compound rotor are incorporated into the motor design.In such design,the proposed motor can not only realize the significant reduction of NdFeB volume,but also artfully convert external magnetic flux leakage into the air-gap field to achieve competitive torque density and desirable PM usage efficiency.For extensive investigation,two topologies of the HPM are designed and analyzed for the proposed motor,which consist of the parallel-magnetic-hybrid(PMH)mode and serial-magnetic-hybrid(SMH)mode.To fully exploit the potential advantages of the proposed motor,a multi-objective optimization design is conducted,where the response surface method(RSM)and sequential non-linear programming(SNP)method are purposely utilized.After optimization,the electromagnetic performances of the motor with PMH mode and SMH mode are evaluated and compared by using finite element method(FEM),which include the back-EMF,cogging torque,output torque,and so on.Furthermore,the partial demagnetization of the ferrite PM is also investigated in the paper.Finally,the theoretical analysis and simulation study verify the effectiveness of the proposed motor and corresponding optimization design.展开更多
We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the ma...We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the magneto-optical trap (MOT). A long distance magnetic transfer setup moves the cold atom over 46cm from the MOT chamber to the UHV science chamber, which provides great optical access and long conservative trap lifetime. After evaporative cooling in the hybrid trap, we produce nearly pure condensates of 1 ~ 107 atoms with lifetime of 80 s in the optical dipole trap.展开更多
A three-dimensional(3-D)global hybrid simulation is carried out for the generation and structure of magnetic reconnection in the magnetosheath due to interaction of an interplanetary Tangential Discontinuity(TD)with t...A three-dimensional(3-D)global hybrid simulation is carried out for the generation and structure of magnetic reconnection in the magnetosheath due to interaction of an interplanetary Tangential Discontinuity(TD)with the bow shock and magnetosphere.Runs are performed for solar wind TDs possessing diFFerent initial half-widths.As the TD propagates through the bow shock toward the magnetopause,it is greatly narrowed by a two-step compression processes,a "shock compression" followed by a subsequent "convective compression".In cases with a relatively thin solar wind TD,3-D patchy reconnection is initiated in the transmitted TD,forming magnetosheath flux ropes.Multiple components of ion particles are present in the velocity distribution in the magnetosheath merging,accompanied by ion heating.For cases with a relatively wide initial TD,a dominant single X-line appears in the subsolar magnetosheath after the transmitted TD is narrowed.A shock analysis is performed for the detailed structure of magnetic reconnection in the magnetosheath.Rotational Discontinuity(RD)/TimeDependent Intermediate Shock(TDIS)are found to dominate the reconnection layer,which and some weak slow shocks are responsible for the ion heating and acceleration.展开更多
Identifying the stiffness and damping of active magnetic bearings(AMBs)is necessary since those parameters can affect the stability and performance of the high-speed rotor AMBs system.A new identification method is pr...Identifying the stiffness and damping of active magnetic bearings(AMBs)is necessary since those parameters can affect the stability and performance of the high-speed rotor AMBs system.A new identification method is proposed to identify the stiffness and damping coefficients of a rotor AMB system.This method combines the global optimization capability of the genetic algorithm(GA)and the local search ability of Nelder-Mead simplex method.The supporting parameters are obtained using the hybrid GA based on the experimental unbalance response calculated through the transfer matrix method.To verify the identified results,the experimental stiffness and damping coefficients are employed to simulate the unbalance responses for the rotor AMBs system using the finite element method.The close agreement between the simulation and experimental data indicates that the proposed identified algorithm can effectively identify the AMBs supporting parameters.展开更多
A large magnetized plasma sheet with size of 60 cm×60 cm×2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave...A large magnetized plasma sheet with size of 60 cm×60 cm×2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion.展开更多
With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles e...With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles electrical equipment. It is di cult to adjust the air gap magnetic field of the permanent magnet generator. Consequently, the output voltage is not stable. The silicon rectifying generator has the problems of low e ciency and high failure rate.In order to solve these problems, a new type of hybrid excitation generator is developed in this paper. The developed hybrid excitation generator has a double-radial permanent magnet, a salient-pole electromagnetic combined rotor,and a fractional slot winding stator, where each rotor pole corresponds to 4.5 stator teeth. The equivalent magnetic circuit diagram of permanent magnet rotor and magnetic rotor is established. Magnetic field finite element analysis(FEA) software is used to conduct the modeling and simulation analysis on double-radial permanent magnet magnetic field, salient-pole electro-magnetic magnetic field and hybrid magnetic field. The magnetic flux density mold value diagram and vector diagram are obtained. The diagrams are used to verify the feasibility of this design. The designed electromagnetic coupling regulator controller can ensure the stable voltage export by changing the magnitude and direction of the excitation current to adjust the size of the air gap magnetic field. Therefore, the problem of output voltage instability in the wide speed range and wide load range of the hybrid excitation generator is solved.展开更多
For the purpose of the replacement of Magnetic Fluid (MF) which is effective in the production of an artificial soft and tactile skin for the robot, etc. by utilizing a rubber solidification method with electrolytic p...For the purpose of the replacement of Magnetic Fluid (MF) which is effective in the production of an artificial soft and tactile skin for the robot, etc. by utilizing a rubber solidification method with electrolytic polymerization, we proposed a novel magnetic responsive intelligent fluid, Hybrid Fluid (HF). HF is structured with water, kerosene, silicon oil having Polydimethylsiloxane (PDMS) and Polyvinyl Alcohol (PVA) as well as magnetic particles and surfactant. The state of HF changes as jelly or fluid by their rates of the constituents and motion style. In the present paper, we presented the characteristics of HF: the viscosity and the magnetization are respectively equivalent to those of other magnetic responsive fluids, MF and their solvents. For the structure, HF is soluble simultaneously with both diene and non-diene rubbers. The diene rubber such as Natural Rubber (NR) or Chloroprene (CR) has a role in the feasibility of electrolytic polymerization and the non-diene rubber such as silicon oil rubber (Q) has a role in defense against deterioration. Therefore, the electrolytically polymerized HF rubber by mixing NR, CR as well as Q is effective for the artificial soft and tactile skin. It is responsive to pressure and has optimal property on piezoelectricity in the case of the mixture of Ni particles as filler. HF is effective in the production of the artificial soft and tactile skin made of rubber.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 60704025)
文摘Conventional ball bearing reaction wheel used to control the attitude of spacecraft can't absorb the centrifugal force caused by imbalance of the wheel rotor,and there will be a torque spike at zero speed,which seriously influences the accuracy and stability of spacecraft attitude control.Compared with traditional ball-bearing wheel,noncontact and no lubrication are the remarkable features of the magnetic bearing reaction wheel,and which can solve the high precision problems of wheel.In general,two radial magnetic bearings are needed in magnetic bearing wheel,and the design results in a relatively large axial dimension and smaller momentum-to-mass ratios.In this paper,a new type of magnetic bearing reaction wheel(MBRW) is introduced for satellite attitude control,and a novel integrated radial hybrid magnetic bearing(RHMB) with permanent magnet bias is designed to reduce the mass and minimize the size of the MBRW,etc.The equivalent magnetic circuit model for the RHMB is presented and a solution is found.The stiffness model is also presented,including current stiffness,position negative stiffness,as well as tilting current stiffness,tilting angular position negative stiffness,force and moment equilibrium equations.The design parameters of the RHMB are given according to the requirement of the MBRW with angular momentum of 30 N ? m ? s when the rotation speed of rotor reaches to 5 kr/min.The nonlinearity of the RHMB is shown by using the characteristic curves of force-control current-position,current stiffness,position stiffness,moment-control current-angular displacement,tilting current stiffness and tilting angular position stiffness considering all the rotor position within the clearance space and the control current.The proposed research ensures the performance of the radial magnetic bearing with permanent magnet bias,and provides theory basis for design of the magnetic bearing wheel.
基金the National Natural Science Foundation of China under Project 52007047,in part by the National Natural Science Foundation of China under Project 51877065,and in part by Natural Science Foundation of Hebei Province under Project E2019202220.
文摘As there is no need of permanent magnet(PM)material and only silicon steel sheet required on the rotor,synchronous reluctance machine(SynRM)can be used for many applications and draws a great research interest.For the SynRM,the torque ripple is a big issue and a great of work could been done on reducing it.In this paper,asymmetrical magnetic flux barriers in the SynRM rotor were studied comprehensively,including angle and width of each layer and each side of the magnetic barrier.The SynRMb with asymmetrical and parallel magnetic flux barrier was found as the best way to design SynRM based on the multi-objective design optimization method.Moreover,each parameter was studied to show the design rule of the asymmetrical magnetic flux barrier.As the average torque will be reduced with the asymmetrical barrier is used,the grain-oriented silicon steel is used on stator teeth of the SynRMb(SynRMbG)was proposed and studied.The analysis results show that the proposed new method can make the SynRM have better performance.
基金Project supported by the Nanocompound Rare Earth Permanent Magnetic Material Research(BG2004033)National KeyProject for Basic Research(2005CB623605)
文摘Magnetic properties and intergranular action in bonded hybrid magnets,based on NdFeB and strontium ferrite powders were investigated.The long-range magnetostatic interaction and short-range exchange coupling interaction existed simultaneously in bonded hybrid magnets,and neither of them could be neglected.Some magnetic property parameters of hybrid magnets could be approximately obtained by adding the hysteresis loops of two magnets pro rata.
文摘The control strategy is presented using passive and active hybrid magnetically suspended flywheels(P&A MSFWs),which can help meet the requirements of high precision and high stability for earth-observation satellites.Compared with the conventional flywheel,P&A MSFW has more rotation degrees of freedom(DOFs)since the rotor is suspended by magnetic bearings,and thus requires more efficient controllers.A modified sliding mode control law(SMC)to our novel nonlinear and coupled system is presented,which is interrupted by inertia matrix uncertainties and external disturbances.SMC law via Lyapunov method is improved,and a fuzzy control scheme is used to attenuate the chatting and control attitude accuracy and maintain the robustness of SMC.Simulation results are provided to illustrate the efficiency of our model by using our control law.
文摘This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering thermal radiation, suction, and magnetic boundary conditions. The nanofluid is made of water with copper and MWCNTs as nanoparticles. The equations are transformed into nonlinear ODEs and solved numerically. The model’s accuracy is confirmed by comparing it with published data. Results show that fluid velocity increases, temperature decreases, and concentration increases with the curvature radius parameter. The hybrid nanofluid is more sensitive to magnetic field changes in velocity, while the nanofluid is more sensitive to magnetic boundary coefficient changes. These insights can optimize heat and mass transfer in industrial processes like chemical reactors and wastewater treatment.
基金the National Natural Science Foundation of China(Nos.11932008 and 11672120)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-kb01)。
文摘A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications.
文摘The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.
基金Project supported by the National Natural Science Foundation of China (Nos. 51707082 and 51607080), the Natural Science Foundation of Jiangsu Province, China (Nos. BK20170546 and BK20150510), the China Postdoctoral Science Foundation (No. 2017M620192), and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Mathematical models are disappointing due to uneven distribution of the air gap magnetic field and significant un- modeled dynamics in magnetic bearing systems. The effectiveness of control deteriorates based on an inaccurate mathematical model, creating slow response speed and high jitter. To solve these problems, a model-free adaptive control (MFAC) scheme is proposed for a three-degree-of-freedom hybrid magnetic bearing (3-DoF HMB) control system. The scheme for 3-DoF HMB depends only on the control current and the objective balanced position, and it does not involve any model information. The design process of a parameter estimation algorithm is model-free, based directly on pseudo-partial-derivative (PPD) derived online from the input and output data information. The rotor start-of-suspension position of the HMB is regulated by auxiliary bearings with different inner diameters, and two kinds of operation situations (linear and nonlinear areas) are present to analyze the validity of MFAC in detail. Both simulations and experiments demonstrate that the proposed MFAC scheme handles the 3-DoF HMB control system with start-of-suspension response speed, smaller steady state error, and higher stability.
基金the Fundamental Research Funds for the Central Universities of China(No.2682017CX050).
文摘The permanent magnet electromagnetic hybridmagnet (PEHM) has the advantages of low energy consumptionand a large suspension air gap. In this study, an unbalancedPEHM structure is proposed, which combines the advantages ofthe previous hybrid magnet structure. First, by establishing themagnetic circuit model of the new hybrid magnet structure, theinfluence of magnetic field distribution on the working magneticcircuit of the magnet is analyzed, and the method of magneticforce correction calculation of the new structure magnet isgiven. Then, the validity of the magnetic calculation method isverified by the 3D finite element method (FEM). Furthermore, theaverage suspension power force ratio is used as the optimizationgoal, and the system parameters of the hybrid magnet under aworking air gap of 6–10 mm and a load condition of 15000–20000 N are optimized by a genetic algorithm. Compared withthe previous hybrid magnet, the optimized hybrid magnet systemcan maintain lower power consumption under comprehensiveworking conditions.
文摘Discusses the interval between laminations in a permanent magnet inductor motor which makes the air gap magnetic field produced by the permanent magnet very uneven in the axial direction, and limits the performance of a motor. Proposes a hybrid magnetic circuit multi couple motor to compensate for the uneven air gap magnetic field, thereby improving the performance of a motor.
基金This work was supported in part by the Natural Science Foundation of China under Grant 51477069 and Grant 517in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions.(Corresponding author:Xiaoyong Zhu)。
文摘This paper proposes a type of flux-switching permanent magnet(FSPM)motor,where the design concept of the hybrid permanent magnets(HPM)and the compound rotor are incorporated into the motor design.In such design,the proposed motor can not only realize the significant reduction of NdFeB volume,but also artfully convert external magnetic flux leakage into the air-gap field to achieve competitive torque density and desirable PM usage efficiency.For extensive investigation,two topologies of the HPM are designed and analyzed for the proposed motor,which consist of the parallel-magnetic-hybrid(PMH)mode and serial-magnetic-hybrid(SMH)mode.To fully exploit the potential advantages of the proposed motor,a multi-objective optimization design is conducted,where the response surface method(RSM)and sequential non-linear programming(SNP)method are purposely utilized.After optimization,the electromagnetic performances of the motor with PMH mode and SMH mode are evaluated and compared by using finite element method(FEM),which include the back-EMF,cogging torque,output torque,and so on.Furthermore,the partial demagnetization of the ferrite PM is also investigated in the paper.Finally,the theoretical analysis and simulation study verify the effectiveness of the proposed motor and corresponding optimization design.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922002the National Natural Science Foundation of China under Grant No 11474347
文摘We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the magneto-optical trap (MOT). A long distance magnetic transfer setup moves the cold atom over 46cm from the MOT chamber to the UHV science chamber, which provides great optical access and long conservative trap lifetime. After evaporative cooling in the hybrid trap, we produce nearly pure condensates of 1 ~ 107 atoms with lifetime of 80 s in the optical dipole trap.
基金Supported by NSF grant ATM-0646442 to Auburn University and the National Natural Science Foundation of China(NSFC) grant 40640420563 to Wuhan University
文摘A three-dimensional(3-D)global hybrid simulation is carried out for the generation and structure of magnetic reconnection in the magnetosheath due to interaction of an interplanetary Tangential Discontinuity(TD)with the bow shock and magnetosphere.Runs are performed for solar wind TDs possessing diFFerent initial half-widths.As the TD propagates through the bow shock toward the magnetopause,it is greatly narrowed by a two-step compression processes,a "shock compression" followed by a subsequent "convective compression".In cases with a relatively thin solar wind TD,3-D patchy reconnection is initiated in the transmitted TD,forming magnetosheath flux ropes.Multiple components of ion particles are present in the velocity distribution in the magnetosheath merging,accompanied by ion heating.For cases with a relatively wide initial TD,a dominant single X-line appears in the subsolar magnetosheath after the transmitted TD is narrowed.A shock analysis is performed for the detailed structure of magnetic reconnection in the magnetosheath.Rotational Discontinuity(RD)/TimeDependent Intermediate Shock(TDIS)are found to dominate the reconnection layer,which and some weak slow shocks are responsible for the ion heating and acceleration.
基金supported by the National Natural Science Foundation of China(No.51675261)Jiangsu Province Key R & D Programs(No.BE2016180)
文摘Identifying the stiffness and damping of active magnetic bearings(AMBs)is necessary since those parameters can affect the stability and performance of the high-speed rotor AMBs system.A new identification method is proposed to identify the stiffness and damping coefficients of a rotor AMB system.This method combines the global optimization capability of the genetic algorithm(GA)and the local search ability of Nelder-Mead simplex method.The supporting parameters are obtained using the hybrid GA based on the experimental unbalance response calculated through the transfer matrix method.To verify the identified results,the experimental stiffness and damping coefficients are employed to simulate the unbalance responses for the rotor AMBs system using the finite element method.The close agreement between the simulation and experimental data indicates that the proposed identified algorithm can effectively identify the AMBs supporting parameters.
文摘A large magnetized plasma sheet with size of 60 cm×60 cm×2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion.
基金Supported by National Natural Science Foundation of China(Grant No.51507096)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2014JL035)
文摘With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles electrical equipment. It is di cult to adjust the air gap magnetic field of the permanent magnet generator. Consequently, the output voltage is not stable. The silicon rectifying generator has the problems of low e ciency and high failure rate.In order to solve these problems, a new type of hybrid excitation generator is developed in this paper. The developed hybrid excitation generator has a double-radial permanent magnet, a salient-pole electromagnetic combined rotor,and a fractional slot winding stator, where each rotor pole corresponds to 4.5 stator teeth. The equivalent magnetic circuit diagram of permanent magnet rotor and magnetic rotor is established. Magnetic field finite element analysis(FEA) software is used to conduct the modeling and simulation analysis on double-radial permanent magnet magnetic field, salient-pole electro-magnetic magnetic field and hybrid magnetic field. The magnetic flux density mold value diagram and vector diagram are obtained. The diagrams are used to verify the feasibility of this design. The designed electromagnetic coupling regulator controller can ensure the stable voltage export by changing the magnitude and direction of the excitation current to adjust the size of the air gap magnetic field. Therefore, the problem of output voltage instability in the wide speed range and wide load range of the hybrid excitation generator is solved.
文摘For the purpose of the replacement of Magnetic Fluid (MF) which is effective in the production of an artificial soft and tactile skin for the robot, etc. by utilizing a rubber solidification method with electrolytic polymerization, we proposed a novel magnetic responsive intelligent fluid, Hybrid Fluid (HF). HF is structured with water, kerosene, silicon oil having Polydimethylsiloxane (PDMS) and Polyvinyl Alcohol (PVA) as well as magnetic particles and surfactant. The state of HF changes as jelly or fluid by their rates of the constituents and motion style. In the present paper, we presented the characteristics of HF: the viscosity and the magnetization are respectively equivalent to those of other magnetic responsive fluids, MF and their solvents. For the structure, HF is soluble simultaneously with both diene and non-diene rubbers. The diene rubber such as Natural Rubber (NR) or Chloroprene (CR) has a role in the feasibility of electrolytic polymerization and the non-diene rubber such as silicon oil rubber (Q) has a role in defense against deterioration. Therefore, the electrolytically polymerized HF rubber by mixing NR, CR as well as Q is effective for the artificial soft and tactile skin. It is responsive to pressure and has optimal property on piezoelectricity in the case of the mixture of Ni particles as filler. HF is effective in the production of the artificial soft and tactile skin made of rubber.