期刊文献+
共找到5,530篇文章
< 1 2 250 >
每页显示 20 50 100
Hybrid Optimization Algorithm for Handwritten Document Enhancement
1
作者 Shu-Chuan Chu Xiaomeng Yang +2 位作者 Li Zhang Václav Snášel Jeng-Shyang Pan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3763-3786,共24页
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro... The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms. 展开更多
关键词 Metaheuristic algorithm gannet optimization algorithm hybrid algorithm handwritten document enhancement
下载PDF
Optimization of LSTM Ship Trajectory Prediction Based on Hybrid Genetic Algorithm
2
作者 ZHAO Pengfei 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期89-102,共14页
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit... Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction. 展开更多
关键词 trajectory prediction LSTM hybrid genetic algorithm
下载PDF
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
3
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios. 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
4
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
Training Neuro-Fuzzy by Using Meta-Heuristic Algorithms for MPPT
5
作者 Ceren Baştemur Kaya Ebubekir Kaya Göksel Gökkuş 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期69-84,共16页
It is one of the topics that have been studied extensively on maximum power point tracking(MPPT)recently.Traditional or soft computing methods are used for MPPT.Since soft computing approaches are more effective than ... It is one of the topics that have been studied extensively on maximum power point tracking(MPPT)recently.Traditional or soft computing methods are used for MPPT.Since soft computing approaches are more effective than traditional approaches,studies on MPPT have shifted in this direction.This study aims comparison of performance of seven meta-heuristic training algorithms in the neuro-fuzzy training for MPPT.The meta-heuristic training algorithms used are particle swarm optimization(PSO),harmony search(HS),cuckoo search(CS),artificial bee colony(ABC)algorithm,bee algorithm(BA),differential evolution(DE)and flower pollination algorithm(FPA).The antecedent and conclusion parameters of neuro-fuzzy are determined by these algorithms.The data of a 250 W photovoltaic(PV)is used in the applications.For effective MPPT,different neuro-fuzzy structures,different membership functions and different control parameter values are evaluated in detail.Related training algorithms are compared in terms of solution quality and convergence speed.The strengths and weaknesses of these algorithms are revealed.It is seen that the type and number of membership function,colony size,number of generations affect the solution quality and convergence speed of the training algorithms.As a result,it has been observed that CS and ABC algorithm are more effective than other algorithms in terms of solution quality and convergence in solving the related problem. 展开更多
关键词 OPTIMIZATION meta-heuristic algorithm NEURO-FUZZY MPPT photovoltaic system
下载PDF
Meta-Heuristic Optimized Hybrid Wavelet Features for Arrhythmia Classification
6
作者 S.R.Deepa M.Subramoniam +2 位作者 R.Swarnalatha S.Poornapushpakala S.Barani 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期745-761,共17页
The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract ... The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract useful information from them.Thus,a computerized system is needed to classify ECG signals with more accurate results effectively.Abnormal heart rhythms are called arrhythmias and cause sudden cardiac deaths.In this work,a Computerized Abnormal Heart Rhythms Detection(CAHRD)system is developed using ECG signals.It consists of four stages;preprocessing,feature extraction,feature optimization and classifier.At first,Pan and Tompkins algorithm is employed to detect the envelope of Q,R and S waves in the preprocessing stage.It uses a recursive filter to eliminate muscle noise,T-wave interference and baseline wander.As the analysis of ECG signal in the spatial domain does not provide a complete description of the signal,the feature extraction involves using frequency contents obtained from multiple wavelet filters;bi-orthogonal,Symlet and Daubechies at different resolution levels in the feature extraction stage.Then,Black Widow Optimization(BWO)is applied to optimize the hybrid wavelet features in the feature optimization stage.Finally,a kernel based Support Vector Machine(SVM)is employed to classify heartbeats into five classes.In SVM,Radial Basis Function(RBF),polynomial and linear kernels are used.A total of∼15000 ECG signals are obtained from the Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia database for performance evaluation of the proposed CAHRD system.Results show that the proposed CAHRD system proved to be a powerful tool for ECG analysis.It correctly classifies five classes of heartbeats with 99.91%accuracy using an RBF kernel with 2nd level wavelet coefficients.The CAHRD system achieves an improvement of∼6%over random projections with the ensemble SVM approach and∼2%over morphological and ECG segment based features with the RBF classifier. 展开更多
关键词 Arrhythmia classification abnormal heartbeats WAVELETS meta-heuristics algorithm neural network signal classification
下载PDF
Multiple-Objective Optimization and Design of Series-Parallel Systems Using Novel Hybrid Genetic Algorithm Meta-Heuristic Approach
7
作者 Essa Abrahim Abdulgader Saleem Thien-My Dao Zhaoheng Liu 《World Journal of Engineering and Technology》 2018年第3期532-555,共24页
In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process ... In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process to generate practical tools for designing reliable series-parallel systems. Because the?RRAP is an NP-hard problem, conventional techniques or heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the optimal solution. A simulation process based on the HGA is developed to obtain different alternative solutions that are required to generate application tools for optimal design of reliable series-parallel systems. Finally, a practical case study regarding security control of a gas turbine in the overspeed state is presented to validate the proposed algorithm. 展开更多
关键词 MULTI-OBJECTIVE Optimization Reliability-Redundancy ALLOCATION OVERSPEED Gas TURBINE hybrid Genetic algorithm
下载PDF
Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms 被引量:4
8
作者 Chengyu Xie Hoang Nguyen +3 位作者 Xuan-Nam Bui Yosoon Choi Jian Zhou Thao Nguyen-Trang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期458-472,共15页
Blasting is well-known as an effective method for fragmenting or moving rock in open-pit mines.To evaluate the quality of blasting,the size of rock distribution is used as a critical criterion in blasting operations.A... Blasting is well-known as an effective method for fragmenting or moving rock in open-pit mines.To evaluate the quality of blasting,the size of rock distribution is used as a critical criterion in blasting operations.A high percentage of oversized rocks generated by blasting operations can lead to economic and environmental damage.Therefore,this study proposed four novel intelligent models to predict the size of rock distribution in mine blasting in order to optimize blasting parameters,as well as the efficiency of blasting operation in open mines.Accordingly,a nature-inspired algorithm(i.e.,firefly algorithm-FFA)and different machine learning algorithms(i.e.,gradient boosting machine(GBM),support vector machine(SVM),Gaussian process(GP),and artificial neural network(ANN))were combined for this aim,abbreviated as FFA-GBM,FFA-SVM,FFA-GP,and FFA-ANN,respectively.Subsequently,predicted results from the abovementioned models were compared with each other using three statistical indicators(e.g.,mean absolute error,root-mean-squared error,and correlation coefficient)and color intensity method.For developing and simulating the size of rock in blasting operations,136 blasting events with their images were collected and analyzed by the Split-Desktop software.In which,111 events were randomly selected for the development and optimization of the models.Subsequently,the remaining 25 blasting events were applied to confirm the accuracy of the proposed models.Herein,blast design parameters were regarded as input variables to predict the size of rock in blasting operations.Finally,the obtained results revealed that the FFA is a robust optimization algorithm for estimating rock fragmentation in bench blasting.Among the models developed in this study,FFA-GBM provided the highest accuracy in predicting the size of fragmented rocks.The other techniques(i.e.,FFA-SVM,FFA-GP,and FFA-ANN)yielded lower computational stability and efficiency.Hence,the FFA-GBM model can be used as a powerful and precise soft computing tool that can be applied to practical engineering cases aiming to improve the quality of blasting and rock fragmentation. 展开更多
关键词 Mine blasting Rock fragmentation Artificial intelligence hybrid model Gradient boosting machine meta-heuristic algorithm
下载PDF
Damage Identification of A TLP Floating Wind Turbine by Meta-Heuristic Algorithms 被引量:4
9
作者 M.M.Ettefagh 《China Ocean Engineering》 SCIE EI CSCD 2015年第6期891-902,共12页
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identific... Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP(Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms(GA), Artificial Immune System(AIS), Particle Swarm Optimization(PSO), and Artificial Bee Colony(ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine(TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine. 展开更多
关键词 floating wind turbine multi-body dynamics damage identification meta-heuristic algorithms OPTIMIZATION
下载PDF
Hyperparameter Optimization for Capsule Network Based Modified Hybrid Rice Optimization Algorithm
10
作者 Zhiwei Ye Ziqian Fang +4 位作者 Zhina Song Haigang Sui Chunyan Yan Wen Zhou Mingwei Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2019-2035,共17页
Hyperparameters play a vital impact in the performance of most machine learning algorithms.It is a challenge for traditional methods to con-figure hyperparameters of the capsule network to obtain high-performance manu... Hyperparameters play a vital impact in the performance of most machine learning algorithms.It is a challenge for traditional methods to con-figure hyperparameters of the capsule network to obtain high-performance manually.Some swarm intelligence or evolutionary computation algorithms have been effectively employed to seek optimal hyperparameters as a com-binatorial optimization problem.However,these algorithms are prone to get trapped in the local optimal solution as random search strategies are adopted.The inspiration for the hybrid rice optimization(HRO)algorithm is from the breeding technology of three-line hybrid rice in China,which has the advantages of easy implementation,less parameters and fast convergence.In the paper,genetic search is combined with the hybrid rice optimization algorithm(GHRO)and employed to obtain the optimal hyperparameter of the capsule network automatically,that is,a probability search technique and a hybridization strategy belong with the primary HRO.Thirteen benchmark functions are used to evaluate the performance of GHRO.Furthermore,the MNIST,Chest X-Ray(pneumonia),and Chest X-Ray(COVID-19&pneumonia)datasets are also utilized to evaluate the capsule network learnt by GHRO.The experimental results show that GHRO is an effective method for optimizing the hyperparameters of the capsule network,which is able to boost the performance of the capsule network on image classification. 展开更多
关键词 Hyperparameter optimization hybrid rice optimization algorithm genetic algorithm capsule network image classification
下载PDF
Optimization of Multi-Execution Modes and Multi-Resource-Constrained Offshore Equipment Project Scheduling Based on a Hybrid Genetic Algorithm
11
作者 Qi Zhou Jinghua Li +2 位作者 Ruipu Dong Qinghua Zhou Boxin Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1263-1281,共19页
Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as r... Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as resourceconstrained project scheduling problems(RCPSPs).To solve RCPSP problems in offshore engineering construction more rapidly,a hybrid genetic algorithmwas established.To solve the defects of genetic algorithms,which easily fall into the local optimal solution,a local search operation was added to a genetic algorithm to defend the offspring after crossover/mutation.Then,an elitist strategy and adaptive operators were adopted to protect the generated optimal solutions,reduce the computation time and avoid premature convergence.A calibrated function method was used to cater to the roulette rules,and appropriate rules for encoding,decoding and crossover/mutation were designed.Finally,a simple network was designed and validated using the case study of a real offshore project.The performance of the genetic algorithmand a simulated annealing algorithmwas compared to validate the feasibility and effectiveness of the approach. 展开更多
关键词 Offshore project multi-execution modes resource-constrained project scheduling hybrid genetic algorithm
下载PDF
Enhanced Detection of Cerebral Atherosclerosis Using Hybrid Algorithm of Image Segmentation
12
作者 Shakunthala Masi Helenprabha Kuttiappan 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期733-744,共12页
In medical science for envisaging human body’s phenomenal structure a major part has been driven by image processing techniques.Major objective of this work is to detect of cerebral atherosclerosis for image segmenta... In medical science for envisaging human body’s phenomenal structure a major part has been driven by image processing techniques.Major objective of this work is to detect of cerebral atherosclerosis for image segmentation applica-tion.Detection of some abnormal structures in human body has become a difficult task to complete with some simple images.For expounding and distinguishing neural architecture of human brain in an effective manner,MRI(Magnetic Reso-nance Imaging)is one of the most suitable and significant technique.Here we work on detection of Cerebral Atherosclerosis from MRI images of patients.Cer-ebral Atherosclerosis is a cerebral vascular disease causes narrowing of the arteries due to buildup of fatty plaque inside the blood vessels of the brain.It leads to Ischemic stroke if not diagnosed early.Stroke affects majorly old age people and percentage of affected women is more compared to men.Results:Preproces-sing is done by using alpha trimmed meanfilter which is used to remove noise and also it enhances the image.Segmentation of cerebral atherosclerosis is done by using K-means clustering,Contextual clustering,and proposed Hybrid algo-rithm.Various parameters like Correlation,Pixel density,energy is determined and from the analysis of parameters it is determined that proposed Hybrid algo-rithm is efficient. 展开更多
关键词 ATHEROSCLEROSIS Ischemic stroke Alpha trimmed meanfilter K-MEANS Contextual clustering hybrid algorithm
下载PDF
Detecting and Preventing of Attacks in Cloud Computing Using Hybrid Algorithm
13
作者 R.S.Aashmi T.Jaya 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期79-95,共17页
Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web de... Cloud computing is the technology that is currently used to provide users with infrastructure,platform,and software services effectively.Under this system,Platform as a Service(PaaS)offers a medium headed for a web development platform that uniformly distributes the requests and resources.Hackers using Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks abruptly interrupt these requests.Even though several existing methods like signature-based,statistical anomaly-based,and stateful protocol analysis are available,they are not sufficient enough to get rid of Denial of service(DoS)and Distributed Denial of Service(DDoS)attacks and hence there is a great need for a definite algorithm.Concerning this issue,we propose an improved hybrid algorithm which is a combination of Multivariate correlation analysis,Spearman coefficient,and mitigation technique.It can easily differentiate common traffic and attack traffic.Not only that,it greatly helps the network to distribute the resources only for authenticated requests.The effects of comparing with the normalized information have shown an extra encouraging detection accuracy of 99%for the numerous DoS attack as well as DDoS attacks. 展开更多
关键词 hybrid algorithm(HA) distributed denial of service(DDoS) denial of service(DoS) platform as a service(PaaS) infrastructure as a service(IaaS) software as a service(SaaS)
下载PDF
Optimization for sound insulation of a sandwich plate with a corrugation and auxetic honeycomb hybrid core
14
作者 Fenglian LI Yiping WANG Yuxing ZOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1595-1612,共18页
A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established ... A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate. 展开更多
关键词 OPTIMIZATION sound insulation hybrid core layer genetic algorithm
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
15
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT
16
作者 Yifan Liu Shancang Li +1 位作者 Xinheng Wang Li Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1233-1261,共29页
The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated... The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats. 展开更多
关键词 Cyber security Industrial Internet of Things artificial intelligence machine learning algorithms hybrid cyber threats
下载PDF
复杂建设环境下基于Hybrid A^(*)算法的铁路平面线形绿色优化设计
17
作者 张天龙 何庆 +2 位作者 高岩 高天赐 李子涵 《高速铁路技术》 2024年第1期47-52,共6页
随着“双碳经济下绿色铁路”理念的兴起,将“绿色生态”融入到铁路平面线路优化已成为近年来的研究热点。本文以铁路建设成本与生态破坏成本的协同优化为目标,引入并改进了一种自动驾驶导航算法(Hybrid A^(*)算法),以适应复杂的铁路设... 随着“双碳经济下绿色铁路”理念的兴起,将“绿色生态”融入到铁路平面线路优化已成为近年来的研究热点。本文以铁路建设成本与生态破坏成本的协同优化为目标,引入并改进了一种自动驾驶导航算法(Hybrid A^(*)算法),以适应复杂的铁路设计问题,同时考虑最小曲线半径、最大曲线半径、最短曲线长度、最短夹直线长度、缓和曲线长度等铁路线形约束。研究结果表明:(1)改进后算法以离散网格方式整合外部环境因素,实现渐进式全局探索,获取接近全局最优的铁路线路设计结果;(2)该方法在复杂外部环境约束下,无需预设水平交点位置和数量,可自动生成符合线路-环境耦合约束的优化平面线路方案。 展开更多
关键词 铁路线路设计 水平线路 绿色生态 hybrid A^(*)算法
下载PDF
基于Hybrid A^(*)算法的变压器声级巡检系统研究与设计
18
作者 李刚 康兵 +2 位作者 许志浩 袁小翠 莫海鑫 《电子设计工程》 2024年第21期13-17,22,共6页
随着国内变电站数目逐步增加,采用固定式声级监测终端对变压器声级检测的方式已经满足不了日常检测的需求。为解决固定式声级监测终端方式成本高、维护复杂、设备利用率低等问题,该文率先提出了一种变压器声级巡检系统,并设计了最优声... 随着国内变电站数目逐步增加,采用固定式声级监测终端对变压器声级检测的方式已经满足不了日常检测的需求。为解决固定式声级监测终端方式成本高、维护复杂、设备利用率低等问题,该文率先提出了一种变压器声级巡检系统,并设计了最优声级巡检路径。通过场地定位传感器生成变压器场地栅格图信息,采用Hybrid A^(*)算法将场地栅格图信息生成符合国标所要求的最优声级巡检路径检测点;针对所开发的变压器声级巡检装置,采用生成的巡检路径对变压器进行声级测定作业,对测定的声级数据进行分析处理。测试结果表明,该文开发的系统与设计算法的变压器声级巡检时间、检测效率以及数据的采集准确性都优于固定式声级监测终端方式,系统完成变压器声级巡检全过程的成功率可达95%。 展开更多
关键词 变压器声级 巡检装置设计 hybrid A^(*)算法 声级测定 系统设计
下载PDF
Modeling the Scheduling Problem in Cellular Manufacturing Systems Using Genetic Algorithm as an Efficient Meta-Heuristic Approach
19
作者 Amin Rezaeipanah Musa Mojarad 《Journal of Artificial Intelligence and Technology》 2021年第4期228-234,共7页
This paper presents a new,bi-criteria mixed_integer programming model for scheduling cells and pieces within each cell in a manufacturing cellular system.The objective of this model is to minimize the makespan and int... This paper presents a new,bi-criteria mixed_integer programming model for scheduling cells and pieces within each cell in a manufacturing cellular system.The objective of this model is to minimize the makespan and intercell movements simultaneously,while considering sequence-dependent cell setup times.In the cellular manufacturing systems design and planning,three main steps must be considered,namely cell formation(i.e,piece families and machine grouping),inter and intra-cell layouts,and scheduling issue.Due to the fact that the cellular manufacturing systems problem is NP-Hard,a genetic algorithm as an efficient meta-heuristic method is proposed to solve such a hard problem.Finally,a number of test problems are solved to show the efficiency of the proposed genetic algorithm and the related computational results are compared with the results obtained by the use of an optimization tool. 展开更多
关键词 SCHEDULING cellular manufacturing system genetic algorithm meta-heuristic
下载PDF
HYBRID MULTI-OBJECTIVE GRADIENT ALGORITHM FOR INVERSE PLANNING OF IMRT
20
作者 李国丽 盛大宁 +3 位作者 王俊椋 景佳 王超 闫冰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期97-101,共5页
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an... The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications. 展开更多
关键词 gradient methods inverse planning multi-objective optimization hybrid gradient algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部