Multiple Fano resonances of plasmonic nanostructures have attracted much attention due to their potential applications in multicomponent biosensing. In this paper, we propose a series of hybridized nanostructures cons...Multiple Fano resonances of plasmonic nanostructures have attracted much attention due to their potential applications in multicomponent biosensing. In this paper, we propose a series of hybridized nanostructures consisting of a single nanoring and multiple nanorods to generate multiple Fano resonances. One to three Fano resonances are achieved through tuning the number of nanorods. The interaction coupling process between different components of the nanostructures is recognized as the mechanism of multiple Fano resonances. We also theoretically investigate the applications of the produced multiple Fano resonances in refractive index sensing. The specific properties of multiple Fano resonances will make our proposed nanostructures beneficial to high-sensitivity biosensors.展开更多
The hybrid particles composed of hydroxyapatite (HAp) and ferrite ( γ-Fe203) were synthesized by two-step precipitation method. The effect of reaction temperature on the morphology of the hybrids was also studied...The hybrid particles composed of hydroxyapatite (HAp) and ferrite ( γ-Fe203) were synthesized by two-step precipitation method. The effect of reaction temperature on the morphology of the hybrids was also studied. The resultant hybrids were characterized by transmission electron microscopy (TEM) and X-ray diffraction analysis(XRD). It was found that γ-Fe203 nanoparticles dispersed within the HAp matrix and these hybrids had a feather-like or spherical morphology when synthesized at 90 ℃ or room temperature, respectively. The magnetic properties of the hybrid showed good superparamagnetic feature, and they could be controlled by the external magnetic field.展开更多
The pristine CeVO_(4) and CeVO_(4)/CNT hybrid composite nanostructured samples were facilely synthesized using a simple silicone oil-bath method.From the X-ray diffraction results,the formation of tetragonal CeVO_(4) ...The pristine CeVO_(4) and CeVO_(4)/CNT hybrid composite nanostructured samples were facilely synthesized using a simple silicone oil-bath method.From the X-ray diffraction results,the formation of tetragonal CeVO_(4) with an additional minor phase of V_(2)O_(5) was identified.When investigated as an anode material for lithium(Li)-ion batteries,the CeVO_(4)/CNT hybrid composite nanostructure(HCNS) electrode demonstrated improved Li storage performance over the pristine CeVO_(4).The Li insertion/de-insertion electrochemical reaction with the CeVO_(4) was analyzed on the basis of cyclic voltammetry study.The cyclic voltammetry analysis revealed that the three-step reduction of V^(5+) to V^(3+), V^(3+) to V^(2+), and V^(2+) to V+ processes is involved and among them,only V^(5+) to V^(3+) is reversible during the Li-ion insertion into CeVO_(4).The CeVO_(4)/CNT HCNS electrode exhibited a discharge capacity as high as 443 mA h g^(-1)(capacity retention of 96.3%) over 200 cycles at 100 mA g^(-1), whereas the pristine CeVO_(4) is limited to 138 mA h g^(-1)(capacity retention of 48%).Even at a high current density of 500 mA g^(-1), the CeVO_(4)/CNT HCNS electrode delivered an excellent reversible capacity of 586.82 mA h g^(-1) after 1200 cycles.展开更多
Hybrid nanostructures including modified fullerene C60 and fluorophoric (E)-2-Cyano-3-(9-ethyl-9Н-carbazole-3-yl)-acrylic acid (cyanoacrylic acid I) were created. Spectral properties (absorption and luminescence spec...Hybrid nanostructures including modified fullerene C60 and fluorophoric (E)-2-Cyano-3-(9-ethyl-9Н-carbazole-3-yl)-acrylic acid (cyanoacrylic acid I) were created. Spectral properties (absorption and luminescence spectra) of the hybrid nanostructures were investigated. It was established what molecules C60 strongly affected spectral properties of cyanoacrylic acid I in the hybrid nanostructures. Luminescence quenching of fluorophore and a change of luminescence features were observed in the hybrid nanostructures.展开更多
GaN nanorods are fabricated using inductively coupled plasma etching with Ni nano-island masks. The poly [2- methoxy-5-(2-ethyl)hexoxy-l,4-phenylenevinylene] (MEH-PPV)/GaN-nanorod hybrid structure is fabricated by...GaN nanorods are fabricated using inductively coupled plasma etching with Ni nano-island masks. The poly [2- methoxy-5-(2-ethyl)hexoxy-l,4-phenylenevinylene] (MEH-PPV)/GaN-nanorod hybrid structure is fabricated by depositing the MEH-PPV film on the GaN nanorods by using the spin-coating process. In the hybrid structure, the spatial separation is minimized to achieve high-emciency non-radiative resonant energy transfer. Optical properties of a novel device consisting of MEH-PPV/GaN-nanorod hybrid structure is studied by analyzing photoluminescenee (PL) spectra. Compared with the pure GaN nanorods, the PL intensity of the band edge emission of GaN in the MEH-PPV/GaN-nanorods is enhanced as much as three times, and the intensity of the yellow band is suppressed slightly. The obtained results are analyzed by energy transfer between the GaN nanorods and the MEH-PPV. An energy transfer model is proposed to explain the phenomenon.展开更多
A sequential deposition method is developed, where the hybrid organic-inorganic halide perovskite (CH3NH3Pb (I1-xBrx)3 ) is synthesized using precursor solutions containing CH3NH3I and PbBr2 with different mole ra...A sequential deposition method is developed, where the hybrid organic-inorganic halide perovskite (CH3NH3Pb (I1-xBrx)3 ) is synthesized using precursor solutions containing CH3NH3I and PbBr2 with different mole ratios and reaction times. The perovskite achieved here is quite stable in the atmosphere for a relatively long time without noticeable degradation, and the perovskite nanowires are proved to be single crystalline structure, based on transmission electron microscopy.Furthermore, strong red photoluminescence from perovskite is observed in the wavelength range from 746nm to 770nm with the increase of the reaction time, on account of the exchanges between I- ions and Br- ions in the perovskite crystal. Lastly, the influences of concentration and reaction time of the precursor solutions are discussed, which are important for evolution of hybrid perovskite from nanocuboid to nanowire and nanosheet.展开更多
Photoelectrochemical(PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for imp...Photoelectrochemical(PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electrode degradation. This overview focuses on the recent development about catalyst nanomaterials and nanostructures in different PEC water splitting systems. As photoanode, Au nanoparticle-decorated TiO_2 nanowire electrodes exhibited enhanced photoactivity in both the UV and the visible regions due to surface plasmon resonance of Au and showed the largest photocurrent generation of up to 710 nm. Pt/Cd S/CGSe electrodes were developed as photocathode. With the role of p–n heterojunction, the photoelectrode showed high stability and evolved hydrogen continuously for more than 10 days. Further, in the Z-scheme system(Bi_2S_3/TNA as photoanode and Pt/Si PVC as photocathode at the same time), a self-bias(open-circuit voltage Voc= 0.766 V) was formed between two photoelectrodes, which could facilitate photogenerated charge transfers and enhance the photoelectrochemical performance, and which might provide new hints for PEC water splitting. Meanwhile, the existing problems and prospective solutions have also been reviewed.展开更多
Emerging engineering strategies of colloidal metal-semiconductor nanorod hybrid nanostructures spanning from type,size,dimension,and location of both metal nanoparticles and semiconductors,co-catalyst,band gap structu...Emerging engineering strategies of colloidal metal-semiconductor nanorod hybrid nanostructures spanning from type,size,dimension,and location of both metal nanoparticles and semiconductors,co-catalyst,band gap structure,surface ligand to hole scavenger are elaborated symmetrically to rationalize the design of this type of intriguing materials for efficient photocatalytic applications.展开更多
Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron mic...Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron microscopy(TEM),UV and fluorescence spectrometer.Results indicated that the core-shell structure gave the QDs outstanding photoluminescence properties,includinganarrowphotoluminescencespectrum,high photoluminescence(PL)quantum yield and long emission lifetime(average PL lifetime of increased from 26.4 ns to 49.1 ns).Cellular studies showed the QDs had good cytocompatibility with Hela cells as determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)assay after coating SiO_2/ZnS,and also proved the feasibility of using the hybrid SiO_2/ZnS coated QDs as optical probes for in vitro cell imaging.The synthesis method of QDs is highly promising for the production of robust and functional optical probes for bio-imaging and sensing applications.展开更多
A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid vibration control. The governing equation of the system is derived based ...A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid vibration control. The governing equation of the system is derived based on the constitutive equations of elastic, viscoelastic and piezoelectric materials, which shows that the magnitude of control force exerted by multi-layer piezoelectric actuator is the quadratic function of the number of piezoelectric laminates used but in direct proportion to control voltage. This means that the multi-layer actuator can produce greater actuating force than that by piezoelectric laminate actuator with the same area under the identical control voltage. The optimal location placement of the multi-layer piezoelectric actuator is also discussed. As an example, the hybrid vibration control of a cantilever rectangular thin-plate is numerically simulated and carried out experimentally. The simulated and experimental results validate the power of multi-layer piezoelectric actuator and indicate that the present hybrid damping technique can effectively suppress the low frequency modal vibration of the experimental thin-plate structure.展开更多
With aim to increase set of modern commercial optoelectronic devices we investigate the optical properties of new triple semiconductor-organics-semiconductor nanostructure having two semiconductor layers with organic ...With aim to increase set of modern commercial optoelectronic devices we investigate the optical properties of new triple semiconductor-organics-semiconductor nanostructure having two semiconductor layers with organic layer between. This will be development to majority of modern publications with investigations of only double hybrid nanostructures with one contacting semiconductor layer and one organic layer. It is supposed that the energy of exciton in the first layer is larger than the energy of exciton in organic layer and that the energy of exciton in organic layer is larger in comparison with energy of exciton in second semiconductor layer. It was shown that installation of organics leads to some frequencies at different parameters or to reflection increasing and transmission decrease or to reverted dependence. New recurrent method of inverted calculation for fields is proposed and using this method the frequency dependences of optical characteristics have been calculated. The role of second semiconductor layer in considered triple structure has been estimated.展开更多
Gallium antimonide(GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthet...Gallium antimonide(GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthetic strategy.Herein we report the design and synthesis of tadpole-like Ga/GaSb nanostructures by a one-step solution-phase synthetic route typically from the precursors of commercial triphenyl antimony(Sb(Ph)_(3))and trimethylaminogallium(Ga(NMe_(2))_(3))at 260°C in 1-octadecene.The GaSb nanocrystals are grown based on a solution–liquid–solid(SLS)mechanism with zinc blende phase,and their size and shape can be controlled in the procedures via manipulating the reaction conditions.Meanwhile,the tadpole-like Ga/GaSb nanostructures can be applied for the fabrication of a GaSb/Si nanostructured heterojunction-like photodetector over silicon wafer,which demonstrates excellent photoresponse and detection performances from wavelength of 405 to 1,064 nm with high photoresponding rate.Typically,the photodetector exhibits a high responsivity of 18.9 A·W^(−1),a superior detectivity of 1.1×10^(13)Jones,and an ultrafast response speed of 44 ns.The present work provides a new strategy to group III–V antimonide-based semiconducting nanostructures that are capable for the fabrication of photodetector with broadband,high-detectivity,and high-speed photodetecting performances.展开更多
A CuI coated Cu hybrid nanostructure by partial iodation of Cu nanowires was used as hole transport material(HTM) to enhance the charge transfer in inverted perovskite solar cells(PSCs). The outer CuI achieved efficie...A CuI coated Cu hybrid nanostructure by partial iodation of Cu nanowires was used as hole transport material(HTM) to enhance the charge transfer in inverted perovskite solar cells(PSCs). The outer CuI achieved efficient charge extraction, and the inner copper facilitated the extracted charges to be rapidly transferred, further improving the overall cell performance. Furthermore,we employed a mixture of [6,6]-phenyl-C71-butyric acid methyl ester(PCBM) and ZnO nanoparticles as electron transport material(ETM) to achieve the fabrication of stable PSCs. The best efficiency was up to 18.8%. This work represents a fundamental clue for the design of efficient and stable PSCs using the chemical in-situ construction strategy for HTM and integration of PCBM and ZnO as ETM.展开更多
We demonstrate an aqueous solution method for the synthesis of a Ag-TiO2-reduced graphene oxide (rGO) hybrid nanostructure (NS) in which the Ag and TiO2 particles are well dispersed on the rGO sheet. The Ag-TiO2-r...We demonstrate an aqueous solution method for the synthesis of a Ag-TiO2-reduced graphene oxide (rGO) hybrid nanostructure (NS) in which the Ag and TiO2 particles are well dispersed on the rGO sheet. The Ag-TiO2-rGO NS was then used as a template to synthesize Pt-TiO2-rGO NS. The resulting hybrid NSs were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), and catalytic studies. It was found that TiO2-rGO, Ag-TiO2-rGO and Pt-TiO2-rGO NSs all show catalytic activity for the reduction of p-nitrophenol to p-aminophenol by NaBH4, and that Pt-TiO2-rGO NS exhibits the highest catalytic activity as well as excellent stability and easy recyclability.展开更多
We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in^2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion ba...We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in^2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion batteries, the uniformly deposited amorphous silicon (a-Si) works as the active material to store electrical energy, and the pre-coated carbon nanofibers (CNFs) serve as both the electron conducting pathway and a strain/stress relaxation layer for the sputtered a-Si layers during the intercalation process of lithium ions. As a result, the as-fabricated lithium ion batteries, with deposited a-Si thicknesses of 200 nm or 300 nm, not only exhibit a high specific capacity of 〉2000 mA.h/g, but also show a good capacity retention of over 80% and Coulombic efficiency of 〉98% after a large number of charge/discharge experiments. Our approach offers an efficient and scalable method to obtain silicon-carbon nanostructured composites for application in lithium ion batteries.展开更多
Metallic-phase transition-metal dichalcogenides(TMDCs)exhibit unusual physicochemical properties compared with their semiconducting counterparts.However,they are thermodynamically unstable to access and it is even mor...Metallic-phase transition-metal dichalcogenides(TMDCs)exhibit unusual physicochemical properties compared with their semiconducting counterparts.However,they are thermodynamically unstable to access and it is even more challenging to construct their metastable-phase heterostructures.Herein,we demonstrate a general solution protocol for phase-controlled synthesis of distorted octahedral 1T WS2-based(1T structure denotes an octahedral coordination for W atom)multidimensional hybrid nanostructures from two-dimensional(2D),one-dimensional(1D),and zero-dimensional(0D)templates.This is realized by tuning the reactivity of tungsten precursor and the interaction between crystal surface and ligands.As a conceptual study on crystal phase-and dimensionality-dependent applications,we find that the three-dimensional(3D)hierarchical architectures achieved,comprising 1T WS2 and 2D Ni3S4,are very active and stable for catalyzing hydrogen evolution.Our results open up a new way to rationally design phase-controlled nanostructures with increased complexity and more elaborate functionalities.展开更多
A cholesterol oxidase(COD)was hybridized with Ca^(2+),Zn^(2+),Al^(3+),Fe^(2+) and Mn^(2+).After precipitation with PO_(4)^(3-) at 4℃ for 72 h,the resulting pellets were freeze-dried.In scanning electron microscopy as...A cholesterol oxidase(COD)was hybridized with Ca^(2+),Zn^(2+),Al^(3+),Fe^(2+) and Mn^(2+).After precipitation with PO_(4)^(3-) at 4℃ for 72 h,the resulting pellets were freeze-dried.In scanning electron microscopy assays,the metal-COD complexes revealed flower-like or granular structures after hybridization.Fourier transform infrared spectroscopy assay revealed the characteristic peaks of both the enzyme and metal materials.X-ray diffraction analysis indicated that COD was encapsulated in CaHPO_(4)·2H_(2)O-,Zn_(3)(PO_(4))_(2)·4H_(2)O-,AlPO_(4-),FeP_(4-) and Mn_(3)(PO_(4))_(2)·3H_(2)O-based nanostructures,respectively.Differential scanning calorimetry assay indicated significant increases in thermo-denaturation temperatures from 60.5℃ to 167.02℃,167.02℃,137.70℃,172.85℃ and 160.99℃,respectively.Using steroid derivatives as substrates,this enzyme could convert cholesterol,pregnenolone,dehydroepiandrosterone,ergosterol,b-sitosterol and stigmasterol to related single products.Hybridization in metal-based nanostructures could significantly enhance the initial conversion ratio and reaction stability of the enzyme.In addition,substrate selectivity could be affected by various metal materials.Briefly,using Ca^(2+),Zn^(2+),Al^(3+),Fe^(2+) and Mn^(2+) as hybrid raw materials could help to encapsulate COD in related metal-enzyme nanostructures,and could help to promote the stability and tolerant properties of the enzyme,while also enhancing its catalytic characteristics.展开更多
A SnSb nanocrystal/graphene hybrid nanocomposite was synthesized by a facile one-step solvothermal route using graphite oxide,SnCl_(2).2H_(2)O and SbCl_(3) as the starting materials,absolute ethanol as the solvent,and...A SnSb nanocrystal/graphene hybrid nanocomposite was synthesized by a facile one-step solvothermal route using graphite oxide,SnCl_(2).2H_(2)O and SbCl_(3) as the starting materials,absolute ethanol as the solvent,and NaBH4 as the reductant.The formation of SnSb alloy and the reduction of the graphene oxide occur simultaneously.SnSb nanoparticles with a size of 30–40 nm were uniformly anchored and confined by the graphene sheets,forming a unique SnSb/graphene hybrid nanostructure.The electrostatic attraction between the positively charged ions(Sn^(2+) and Sb^(3+))and the negatively charged graphene oxide plays an important role in the uniform distribution of the SnSb particles on the graphene sheets.The electrochemical Li-storage properties of the nanocomposite were investigated as a potential high-capacity anode material for Li-ion batteries.The results show that the nanocomposite exhibits an obvious enhanced Li-storage performance compared with bare SnSb.The improvement of the electrochemical performance could be attributed to the formation of two-dimensional conductive networks,homogeneous dispersion and confinement of SnSb nanoparticles and the enhanced wetting of active material with the electrolyte for increased specific surface area by the introduction of graphene into SnSb nanoparticles.Li-ion chemical diffusion coefficient and ac impedance were measured to understand the underlying mechanism for the improved electrochemical performance.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674275,11601469,and 61505174)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2016203282,C2014203212,and E2016203185)the Science and Technology Research Project of Hebei Higher Education Institutions,China(Grant No.QN2018071)
文摘Multiple Fano resonances of plasmonic nanostructures have attracted much attention due to their potential applications in multicomponent biosensing. In this paper, we propose a series of hybridized nanostructures consisting of a single nanoring and multiple nanorods to generate multiple Fano resonances. One to three Fano resonances are achieved through tuning the number of nanorods. The interaction coupling process between different components of the nanostructures is recognized as the mechanism of multiple Fano resonances. We also theoretically investigate the applications of the produced multiple Fano resonances in refractive index sensing. The specific properties of multiple Fano resonances will make our proposed nanostructures beneficial to high-sensitivity biosensors.
基金Funded by the Project of Shandong Province Higher Educational Science and Technology Program(No.J09LC13)the Promotive Research Fund for Excellent Young and Middle-Aged Scientists of the Shandong Province(No.BS2010CL018)
文摘The hybrid particles composed of hydroxyapatite (HAp) and ferrite ( γ-Fe203) were synthesized by two-step precipitation method. The effect of reaction temperature on the morphology of the hybrids was also studied. The resultant hybrids were characterized by transmission electron microscopy (TEM) and X-ray diffraction analysis(XRD). It was found that γ-Fe203 nanoparticles dispersed within the HAp matrix and these hybrids had a feather-like or spherical morphology when synthesized at 90 ℃ or room temperature, respectively. The magnetic properties of the hybrid showed good superparamagnetic feature, and they could be controlled by the external magnetic field.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(No.2018R1A6A1A03025708 and No.2020R1A2B5B01002318)。
文摘The pristine CeVO_(4) and CeVO_(4)/CNT hybrid composite nanostructured samples were facilely synthesized using a simple silicone oil-bath method.From the X-ray diffraction results,the formation of tetragonal CeVO_(4) with an additional minor phase of V_(2)O_(5) was identified.When investigated as an anode material for lithium(Li)-ion batteries,the CeVO_(4)/CNT hybrid composite nanostructure(HCNS) electrode demonstrated improved Li storage performance over the pristine CeVO_(4).The Li insertion/de-insertion electrochemical reaction with the CeVO_(4) was analyzed on the basis of cyclic voltammetry study.The cyclic voltammetry analysis revealed that the three-step reduction of V^(5+) to V^(3+), V^(3+) to V^(2+), and V^(2+) to V+ processes is involved and among them,only V^(5+) to V^(3+) is reversible during the Li-ion insertion into CeVO_(4).The CeVO_(4)/CNT HCNS electrode exhibited a discharge capacity as high as 443 mA h g^(-1)(capacity retention of 96.3%) over 200 cycles at 100 mA g^(-1), whereas the pristine CeVO_(4) is limited to 138 mA h g^(-1)(capacity retention of 48%).Even at a high current density of 500 mA g^(-1), the CeVO_(4)/CNT HCNS electrode delivered an excellent reversible capacity of 586.82 mA h g^(-1) after 1200 cycles.
文摘Hybrid nanostructures including modified fullerene C60 and fluorophoric (E)-2-Cyano-3-(9-ethyl-9Н-carbazole-3-yl)-acrylic acid (cyanoacrylic acid I) were created. Spectral properties (absorption and luminescence spectra) of the hybrid nanostructures were investigated. It was established what molecules C60 strongly affected spectral properties of cyanoacrylic acid I in the hybrid nanostructures. Luminescence quenching of fluorophore and a change of luminescence features were observed in the hybrid nanostructures.
基金Supported by the National Key Technology Research and Development Program under Grant No 2016YFB0400100the National Basic Research Program of China under Grant No 2012CB619304+4 种基金the High-Technology Research and Development Program of China under Grant Nos 2014AA032605 and 2015AA033305the National Natural Science Foundation of China under Grant Nos61274003,61422401,51461135002 and 61334009the Key Technology Research of Jiangsu Province under Grant No BE2015111the Solid State Lighting and Energy-Saving Electronics Collaborative Innovation Centerthe Research Funds from NJU-Yangzhou Institute of Opto-electronics
文摘GaN nanorods are fabricated using inductively coupled plasma etching with Ni nano-island masks. The poly [2- methoxy-5-(2-ethyl)hexoxy-l,4-phenylenevinylene] (MEH-PPV)/GaN-nanorod hybrid structure is fabricated by depositing the MEH-PPV film on the GaN nanorods by using the spin-coating process. In the hybrid structure, the spatial separation is minimized to achieve high-emciency non-radiative resonant energy transfer. Optical properties of a novel device consisting of MEH-PPV/GaN-nanorod hybrid structure is studied by analyzing photoluminescenee (PL) spectra. Compared with the pure GaN nanorods, the PL intensity of the band edge emission of GaN in the MEH-PPV/GaN-nanorods is enhanced as much as three times, and the intensity of the yellow band is suppressed slightly. The obtained results are analyzed by energy transfer between the GaN nanorods and the MEH-PPV. An energy transfer model is proposed to explain the phenomenon.
文摘A sequential deposition method is developed, where the hybrid organic-inorganic halide perovskite (CH3NH3Pb (I1-xBrx)3 ) is synthesized using precursor solutions containing CH3NH3I and PbBr2 with different mole ratios and reaction times. The perovskite achieved here is quite stable in the atmosphere for a relatively long time without noticeable degradation, and the perovskite nanowires are proved to be single crystalline structure, based on transmission electron microscopy.Furthermore, strong red photoluminescence from perovskite is observed in the wavelength range from 746nm to 770nm with the increase of the reaction time, on account of the exchanges between I- ions and Br- ions in the perovskite crystal. Lastly, the influences of concentration and reaction time of the precursor solutions are discussed, which are important for evolution of hybrid perovskite from nanocuboid to nanowire and nanosheet.
基金supported by the EU-China EcoFuel project(FP7,246772)from the European Commission
文摘Photoelectrochemical(PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electrode degradation. This overview focuses on the recent development about catalyst nanomaterials and nanostructures in different PEC water splitting systems. As photoanode, Au nanoparticle-decorated TiO_2 nanowire electrodes exhibited enhanced photoactivity in both the UV and the visible regions due to surface plasmon resonance of Au and showed the largest photocurrent generation of up to 710 nm. Pt/Cd S/CGSe electrodes were developed as photocathode. With the role of p–n heterojunction, the photoelectrode showed high stability and evolved hydrogen continuously for more than 10 days. Further, in the Z-scheme system(Bi_2S_3/TNA as photoanode and Pt/Si PVC as photocathode at the same time), a self-bias(open-circuit voltage Voc= 0.766 V) was formed between two photoelectrodes, which could facilitate photogenerated charge transfers and enhance the photoelectrochemical performance, and which might provide new hints for PEC water splitting. Meanwhile, the existing problems and prospective solutions have also been reviewed.
基金supported by the Australian Research Council(ARC)Future Fellowship Scheme(FT210100509)ARC Discovery Project(DP220101959)+2 种基金the Hebrew University of Jerusalem--Zelman Cowen Academic Initiatives(zCAl)Joint Projects 2021,the Innovation and Technology Commission(grant no.MHP/104/21)Shenzhen Science Technology and Innovation Commission(grant no.20210324125612035)City University of Hong Kong(grant no.9360140).
文摘Emerging engineering strategies of colloidal metal-semiconductor nanorod hybrid nanostructures spanning from type,size,dimension,and location of both metal nanoparticles and semiconductors,co-catalyst,band gap structure,surface ligand to hole scavenger are elaborated symmetrically to rationalize the design of this type of intriguing materials for efficient photocatalytic applications.
基金The Fundamental Research Funds for the Central Universities,China(No.2232015D3-15)Shanghai Natural Science Foundation,China(No.14ZR1401300)“111 Project”Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron microscopy(TEM),UV and fluorescence spectrometer.Results indicated that the core-shell structure gave the QDs outstanding photoluminescence properties,includinganarrowphotoluminescencespectrum,high photoluminescence(PL)quantum yield and long emission lifetime(average PL lifetime of increased from 26.4 ns to 49.1 ns).Cellular studies showed the QDs had good cytocompatibility with Hela cells as determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)assay after coating SiO_2/ZnS,and also proved the feasibility of using the hybrid SiO_2/ZnS coated QDs as optical probes for in vitro cell imaging.The synthesis method of QDs is highly promising for the production of robust and functional optical probes for bio-imaging and sensing applications.
基金This project is supported by National Natural Science Foundation of China(No.50275114,No.10476020).
文摘A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid vibration control. The governing equation of the system is derived based on the constitutive equations of elastic, viscoelastic and piezoelectric materials, which shows that the magnitude of control force exerted by multi-layer piezoelectric actuator is the quadratic function of the number of piezoelectric laminates used but in direct proportion to control voltage. This means that the multi-layer actuator can produce greater actuating force than that by piezoelectric laminate actuator with the same area under the identical control voltage. The optimal location placement of the multi-layer piezoelectric actuator is also discussed. As an example, the hybrid vibration control of a cantilever rectangular thin-plate is numerically simulated and carried out experimentally. The simulated and experimental results validate the power of multi-layer piezoelectric actuator and indicate that the present hybrid damping technique can effectively suppress the low frequency modal vibration of the experimental thin-plate structure.
文摘With aim to increase set of modern commercial optoelectronic devices we investigate the optical properties of new triple semiconductor-organics-semiconductor nanostructure having two semiconductor layers with organic layer between. This will be development to majority of modern publications with investigations of only double hybrid nanostructures with one contacting semiconductor layer and one organic layer. It is supposed that the energy of exciton in the first layer is larger than the energy of exciton in organic layer and that the energy of exciton in organic layer is larger in comparison with energy of exciton in second semiconductor layer. It was shown that installation of organics leads to some frequencies at different parameters or to reflection increasing and transmission decrease or to reverted dependence. New recurrent method of inverted calculation for fields is proposed and using this method the frequency dependences of optical characteristics have been calculated. The role of second semiconductor layer in considered triple structure has been estimated.
基金supported by the National Natural Science Foundation of China(Nos.U1932150 and 21571166)Anhui Provincial Natural Science Foundation(No.1908085QB72).
文摘Gallium antimonide(GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthetic strategy.Herein we report the design and synthesis of tadpole-like Ga/GaSb nanostructures by a one-step solution-phase synthetic route typically from the precursors of commercial triphenyl antimony(Sb(Ph)_(3))and trimethylaminogallium(Ga(NMe_(2))_(3))at 260°C in 1-octadecene.The GaSb nanocrystals are grown based on a solution–liquid–solid(SLS)mechanism with zinc blende phase,and their size and shape can be controlled in the procedures via manipulating the reaction conditions.Meanwhile,the tadpole-like Ga/GaSb nanostructures can be applied for the fabrication of a GaSb/Si nanostructured heterojunction-like photodetector over silicon wafer,which demonstrates excellent photoresponse and detection performances from wavelength of 405 to 1,064 nm with high photoresponding rate.Typically,the photodetector exhibits a high responsivity of 18.9 A·W^(−1),a superior detectivity of 1.1×10^(13)Jones,and an ultrafast response speed of 44 ns.The present work provides a new strategy to group III–V antimonide-based semiconducting nanostructures that are capable for the fabrication of photodetector with broadband,high-detectivity,and high-speed photodetecting performances.
基金supported by the National Natural Science Foundation of China (21801104, 21871121, 21471071, 21431002, 21805232)the Fundamental Research Funds for the Central Universities of China (lzujbky-2018-k08, lzujbky-2018-ot01, 20720180061)
文摘A CuI coated Cu hybrid nanostructure by partial iodation of Cu nanowires was used as hole transport material(HTM) to enhance the charge transfer in inverted perovskite solar cells(PSCs). The outer CuI achieved efficient charge extraction, and the inner copper facilitated the extracted charges to be rapidly transferred, further improving the overall cell performance. Furthermore,we employed a mixture of [6,6]-phenyl-C71-butyric acid methyl ester(PCBM) and ZnO nanoparticles as electron transport material(ETM) to achieve the fabrication of stable PSCs. The best efficiency was up to 18.8%. This work represents a fundamental clue for the design of efficient and stable PSCs using the chemical in-situ construction strategy for HTM and integration of PCBM and ZnO as ETM.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (No. 20820102037) and the National Basic Research Program of China (973 Program) (Nos. 2009CB930100 and 2010CB933600). Dr. Ping Wang acknowledges partial financial support from the China Postdoctoral Science Foundation (No. 20090461047).
文摘We demonstrate an aqueous solution method for the synthesis of a Ag-TiO2-reduced graphene oxide (rGO) hybrid nanostructure (NS) in which the Ag and TiO2 particles are well dispersed on the rGO sheet. The Ag-TiO2-rGO NS was then used as a template to synthesize Pt-TiO2-rGO NS. The resulting hybrid NSs were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), and catalytic studies. It was found that TiO2-rGO, Ag-TiO2-rGO and Pt-TiO2-rGO NSs all show catalytic activity for the reduction of p-nitrophenol to p-aminophenol by NaBH4, and that Pt-TiO2-rGO NS exhibits the highest catalytic activity as well as excellent stability and easy recyclability.
基金We acknowledge financial support from the National Science Foundation (CCF 0726815 and CCF 0702204).
文摘We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in^2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion batteries, the uniformly deposited amorphous silicon (a-Si) works as the active material to store electrical energy, and the pre-coated carbon nanofibers (CNFs) serve as both the electron conducting pathway and a strain/stress relaxation layer for the sputtered a-Si layers during the intercalation process of lithium ions. As a result, the as-fabricated lithium ion batteries, with deposited a-Si thicknesses of 200 nm or 300 nm, not only exhibit a high specific capacity of 〉2000 mA.h/g, but also show a good capacity retention of over 80% and Coulombic efficiency of 〉98% after a large number of charge/discharge experiments. Our approach offers an efficient and scalable method to obtain silicon-carbon nanostructured composites for application in lithium ion batteries.
基金supported by the National Natural Science Foundation of China(grant nos.21431006,21521001,and 21761132008)the Key Research Program of Frontier Sciences,CAS(grant no.QYZDJ-SSW-SLH036)+5 种基金the National Basic Research Program of China(grant no.2014CB931800)the Users with Excellence and Scientific Research Grant of Hefei Science Centre of CAS(grant no.2015HSC-UE007)S-K.H.acknowledges the Fundamental Research Funds for the Central Universities(grant no.PA2018GDQT0013)C.G.acknowledges the National Natural Science Foundation of China(grant no.21905261)the National Postdoctoral Program for Innovative Talents(grant no.BX20180284)the China Postdoctoral Science Foundation(grant no.2019M660155).
文摘Metallic-phase transition-metal dichalcogenides(TMDCs)exhibit unusual physicochemical properties compared with their semiconducting counterparts.However,they are thermodynamically unstable to access and it is even more challenging to construct their metastable-phase heterostructures.Herein,we demonstrate a general solution protocol for phase-controlled synthesis of distorted octahedral 1T WS2-based(1T structure denotes an octahedral coordination for W atom)multidimensional hybrid nanostructures from two-dimensional(2D),one-dimensional(1D),and zero-dimensional(0D)templates.This is realized by tuning the reactivity of tungsten precursor and the interaction between crystal surface and ligands.As a conceptual study on crystal phase-and dimensionality-dependent applications,we find that the three-dimensional(3D)hierarchical architectures achieved,comprising 1T WS2 and 2D Ni3S4,are very active and stable for catalyzing hydrogen evolution.Our results open up a new way to rationally design phase-controlled nanostructures with increased complexity and more elaborate functionalities.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFA0900304-300)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20160053 and BE2018055)the Priority Academic Program Development of Jiangsu Higher Education Institutions,111 Project(Grant No.111-2-06).
文摘A cholesterol oxidase(COD)was hybridized with Ca^(2+),Zn^(2+),Al^(3+),Fe^(2+) and Mn^(2+).After precipitation with PO_(4)^(3-) at 4℃ for 72 h,the resulting pellets were freeze-dried.In scanning electron microscopy assays,the metal-COD complexes revealed flower-like or granular structures after hybridization.Fourier transform infrared spectroscopy assay revealed the characteristic peaks of both the enzyme and metal materials.X-ray diffraction analysis indicated that COD was encapsulated in CaHPO_(4)·2H_(2)O-,Zn_(3)(PO_(4))_(2)·4H_(2)O-,AlPO_(4-),FeP_(4-) and Mn_(3)(PO_(4))_(2)·3H_(2)O-based nanostructures,respectively.Differential scanning calorimetry assay indicated significant increases in thermo-denaturation temperatures from 60.5℃ to 167.02℃,167.02℃,137.70℃,172.85℃ and 160.99℃,respectively.Using steroid derivatives as substrates,this enzyme could convert cholesterol,pregnenolone,dehydroepiandrosterone,ergosterol,b-sitosterol and stigmasterol to related single products.Hybridization in metal-based nanostructures could significantly enhance the initial conversion ratio and reaction stability of the enzyme.In addition,substrate selectivity could be affected by various metal materials.Briefly,using Ca^(2+),Zn^(2+),Al^(3+),Fe^(2+) and Mn^(2+) as hybrid raw materials could help to encapsulate COD in related metal-enzyme nanostructures,and could help to promote the stability and tolerant properties of the enzyme,while also enhancing its catalytic characteristics.
基金supported by the Zijin Program of Zhejiang University,China,the Fundamental Research Funds for the Central Universities(No.2010QNA4003)the Ph.D.Programs Foundation of Ministry of Education of China(No.20100101120024)+2 种基金the Foundation of Education Office of Zhejiang Province(No.Y201016484)the Qianjiang Talents Project of Science Technology Department of Zhejiang Province(2011R10021)the National Natural Science Foundation of China(No.51101139).
文摘A SnSb nanocrystal/graphene hybrid nanocomposite was synthesized by a facile one-step solvothermal route using graphite oxide,SnCl_(2).2H_(2)O and SbCl_(3) as the starting materials,absolute ethanol as the solvent,and NaBH4 as the reductant.The formation of SnSb alloy and the reduction of the graphene oxide occur simultaneously.SnSb nanoparticles with a size of 30–40 nm were uniformly anchored and confined by the graphene sheets,forming a unique SnSb/graphene hybrid nanostructure.The electrostatic attraction between the positively charged ions(Sn^(2+) and Sb^(3+))and the negatively charged graphene oxide plays an important role in the uniform distribution of the SnSb particles on the graphene sheets.The electrochemical Li-storage properties of the nanocomposite were investigated as a potential high-capacity anode material for Li-ion batteries.The results show that the nanocomposite exhibits an obvious enhanced Li-storage performance compared with bare SnSb.The improvement of the electrochemical performance could be attributed to the formation of two-dimensional conductive networks,homogeneous dispersion and confinement of SnSb nanoparticles and the enhanced wetting of active material with the electrolyte for increased specific surface area by the introduction of graphene into SnSb nanoparticles.Li-ion chemical diffusion coefficient and ac impedance were measured to understand the underlying mechanism for the improved electrochemical performance.