期刊文献+
共找到994篇文章
< 1 2 50 >
每页显示 20 50 100
Optimal Location and Sizing of Distributed Generator via Improved Multi-Objective Particle Swarm Optimization in Active Distribution Network Considering Multi-Resource
1
作者 Guobin He Rui Su +5 位作者 Jinxin Yang Yuanping Huang Huanlin Chen Donghui Zhang Cangtao Yang Wenwen Li 《Energy Engineering》 EI 2023年第9期2133-2154,共22页
In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distribut... In the framework of vigorous promotion of low-carbon power system growth as well as economic globalization,multi-resource penetration in active distribution networks has been advancing fiercely.In particular,distributed generation(DG)based on renewable energy is critical for active distribution network operation enhancement.To comprehensively analyze the accessing impact of DG in distribution networks from various parts,this paper establishes an optimal DG location and sizing planning model based on active power losses,voltage profile,pollution emissions,and the economics of DG costs as well as meteorological conditions.Subsequently,multiobjective particle swarm optimization(MOPSO)is applied to obtain the optimal Pareto front.Besides,for the sake of avoiding the influence of the subjective setting of the weight coefficient,the decisionmethod based on amodified ideal point is applied to execute a Pareto front decision.Finally,simulation tests based on IEEE33 and IEEE69 nodes are designed.The experimental results show thatMOPSO can achieve wider and more uniformPareto front distribution.In the IEEE33 node test system,power loss,and voltage deviation decreased by 52.23%,and 38.89%,respectively,while taking the economy into account.In the IEEE69 test system,the three indexes decreased by 19.67%,and 58.96%,respectively. 展开更多
关键词 Active distribution network multi-resource penetration operation enhancement particle swarm optimization multi-objective optimization
下载PDF
An Improved Multi-Objective Particle Swarm Optimization Routing on MANET
2
作者 G.Rajeshkumar M.Vinoth Kumar +3 位作者 K.Sailaja Kumar Surbhi Bhatia Arwa Mashat Pankaj Dadheech 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1187-1200,共14页
A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary a... A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary aim of MANETs is to extendflexibility into the self-directed,mobile,and wireless domain,in which a cluster of autonomous nodes forms a MANET routing system.An Intrusion Detection System(IDS)is a tool that examines a network for mal-icious behavior/policy violations.A network monitoring system is often used to report/gather any suspicious attacks/violations.An IDS is a software program or hardware system that monitors network/security traffic for malicious attacks,sending out alerts whenever it detects malicious nodes.The impact of Dynamic Source Routing(DSR)in MANETs challenging blackhole attack is investigated in this research article.The Cluster Trust Adaptive Acknowledgement(CTAA)method is used to identify unauthorised and malfunctioning nodes in a MANET environment.MANET system is active and provides successful delivery of a data packet,which implements Kalman Filters(KF)to anticipate node trustworthiness.Furthermore,KF is used to eliminate synchronisation errors that arise during the sending and receiving data.In order to provide an energy-efficient solution and to minimize network traffic,route optimization in MANET by using Multi-Objective Particle Swarm Optimization(MOPSO)technique to determine the optimal num-ber of clustered MANET along with energy dissipation in nodes.According to the researchfindings,the proposed CTAA-MPSO achieves a Packet Delivery Ratio(PDR)of 3.3%.In MANET,the PDR of CTAA-MPSO improves CTAA-PSO by 3.5%at 30%malware. 展开更多
关键词 MANET intrusion detection system CLUSTER kalmanfilter dynamic source routing multi-objective particle swarm optimization packet delivery ratio
下载PDF
Multi-Objective Weather Routing Algorithm for Ships Based on Hybrid Particle Swarm Optimization 被引量:1
3
作者 ZHAO Wei WANG Hongbo +3 位作者 GENG Jianning HU Wenmei ZHANG Zhanshuo ZHANG Guangyu 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第1期28-38,共11页
Maritime transportation has become an important part of the international trade system.To promote its sustainable de-velopment,it is necessary to reduce the fuel consumption of ships,decrease navigation risks,and shor... Maritime transportation has become an important part of the international trade system.To promote its sustainable de-velopment,it is necessary to reduce the fuel consumption of ships,decrease navigation risks,and shorten the navigation time.Ac-cordingly,planning a multi-objective route for ships is an effective way to achieve these goals.In this paper,we propose a multi-ob-jective optimal ship weather routing system framework.Based on this framework,a ship route model,ship fuel consumption model,and navigation risk model are established,and a non-dominated sorting and multi-objective ship weather routing algorithm based on particle swarm optimization is proposed.To fasten the convergence of the algorithm and improve the diversity of route solutions,a mutation operation and an elite selection operation are introduced in the algorithm.Based on the Pareto optimal front and Pareto optimal solution set obtained by the algorithm,a recommended route selection criterion is designed.Finally,two sets of simulated navigation simulation experiments on a container ship are conducted.The experimental results show that the proposed multi-objective optimal weather routing system can be used to plan a ship route with low navigation risk,short navigation time,and low fuel consumption,fulfilling the safety,efficiency,and economic goals. 展开更多
关键词 weather routing particle swarm optimization route planning multi-objective optimization
下载PDF
A modified back analysis method for deep excavation with multi-objective optimization procedure
4
作者 Chenyang Zhao Le Chen +2 位作者 Pengpeng Ni Wenjun Xia Bin Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1373-1387,共15页
Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective ... Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task. 展开更多
关键词 multi-objective optimization Back analysis Surrogate model multi-objective particle swarm optimization(MOPSO) Deep excavation
下载PDF
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:9
5
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 particle swarm optimization Genetic algorithm Random inertia weight multi-objective reservoir operation Reservoir group Panjiakou Reservoir
下载PDF
An Improved Unsupervised Image Segmentation Method Based on Multi-Objective Particle Swarm Optimization Clustering Algorithm 被引量:3
6
作者 Zhe Liu Bao Xiang +2 位作者 Yuqing Song Hu Lu Qingfeng Liu 《Computers, Materials & Continua》 SCIE EI 2019年第2期451-461,共11页
Most image segmentation methods based on clustering algorithms use singleobjective function to implement image segmentation.To avoid the defect,this paper proposes a new image segmentation method based on a multi-obje... Most image segmentation methods based on clustering algorithms use singleobjective function to implement image segmentation.To avoid the defect,this paper proposes a new image segmentation method based on a multi-objective particle swarm optimization(PSO)clustering algorithm.This unsupervised algorithm not only offers a new similarity computing approach based on electromagnetic forces,but also obtains the proper number of clusters which is determined by scale-space theory.It is experimentally demonstrated that the applicability and effectiveness of the proposed multi-objective PSO clustering algorithm. 展开更多
关键词 multi-objective optimization particle swarm optimization electromagnetic forces scale-space theory
下载PDF
Optimization of the Hydrological Model Using Multi-objective Particle Swarm Optimization Algorithm 被引量:2
7
作者 黄晓敏 雷晓辉 +1 位作者 王宇晖 朱连勇 《Journal of Donghua University(English Edition)》 EI CAS 2011年第5期519-522,共4页
An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solution... An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solutions with two objectives: high flow Nash-Sutcliffe efficiency and low flow Nash- Sutcliffe efficiency. The two sets' coverage rate and Pareto front spacing metric are two criterions to analyze the performance of the algorithms. MOPSO algorithm surpasses multi-objective shuffled complex evolution metcopolis (MOSCEM_UA) algorithr~, in terms of the two sets' coverage rate. But when we come to Pareto front spacing rate, the non-dominated solutions of MOSCEM_ UA algorithm are better-distributed than that of MOPSO algorithm when the iteration is set to 40 000. In addition, there are obvious conflicts between the two objectives. But a compromise solution can be acquired by adopting the MOPSO algorithm. 展开更多
关键词 multi-objective particle swarm optimization (MOPSO) hydrological model (HYMOD) multi-objective optimization
下载PDF
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
8
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
下载PDF
A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser 被引量:1
9
作者 Y.Zheng J.Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期275-284,共10页
A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta... A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid’s area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Paretooptimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effec tively deal with multi-objective optimizations with black-box functions. 展开更多
关键词 multi-objective particle swarm optimization Kriging meta-model Trapezoid index Deepwater composite riser
下载PDF
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization 被引量:1
10
作者 Lingzhi Yi Renzhe Duan +3 位作者 Wang Li Yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight Train Automatic Train Operation Dynamics Model Competitive multi-objective particle swarm optimization Algorithm (CMOPSO) multi-objective optimization
下载PDF
Operation Optimal Control of Urban Rail Train Based on Multi-Objective Particle Swarm Optimization
11
作者 Liang Jin Qinghui Meng Shuang Liang 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期387-395,共9页
The energy consumption of train operation occupies a large proportion of the total consumption of railway transportation.In order to improve the oper-ating energy utilization rate of trains,a multi-objective particle ... The energy consumption of train operation occupies a large proportion of the total consumption of railway transportation.In order to improve the oper-ating energy utilization rate of trains,a multi-objective particle swarm optimiza-tion(MPSO)algorithm with energy consumption,punctuality and parking accuracy as the objective and safety as the constraint is built.To accelerate its the convergence process,the train operation progression is divided into several modes according to the train speed-distance curve.A human-computer interactive particle swarm optimization algorithm is proposed,which presents the optimized results after a certain number of iterations to the decision maker,and the satisfac-tory outcomes can be obtained after a limited number of adjustments.The multi-objective particle swarm optimization(MPSO)algorithm is used to optimize the train operation process.An algorithm based on the important relationship between the objective and the preference information of the given reference points is sug-gested to overcome the shortcomings of the existing algorithms.These methods significantly increase the computational complexity and convergence of the algo-rithm.An adaptive fuzzy logic system that can simultaneously utilize experience information andfield data information is proposed to adjust the consequences of off-line optimization in real time,thereby eliminating the influence of uncertainty on train operation.After optimization and adjustment,the whole running time has been increased by 0.5 s,the energy consumption has been reduced by 12%,the parking accuracy has been increased by 8%,and the comprehensive performance has been enhanced. 展开更多
关键词 particle swarm optimization multi-objective urban rail train optimal control
下载PDF
Multi-objective particle swarm optimization by fusing multiple strategies
12
作者 XU Zhenxing ZHU Shuiran 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期284-299,共16页
To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes t... To improve the convergence and distributivity of multi-objective particle swarm optimization,we propose a method for multi-objective particle swarm optimization by fusing multiple strategies(MOPSO-MS),which includes three strategies.Firstly,the average crowding distance method is proposed,which takes into account the influence of individuals on the crowding distance and reduces the algorithm’s time complexity and computational cost,ensuring efficient external archive maintenance and improving the algorithm’s distribution.Secondly,the algorithm utilizes particle difference to guide adaptive inertia weights.In this way,the degree of disparity between a particle’s historical optimum and the population’s global optimum is used to determine the value of w.With different degrees of disparity,the size of w is adjusted nonlinearly,improving the algorithm’s convergence.Finally,the algorithm is designed to control the search direction by hierarchically selecting the globally optimal policy,which can avoid a single search direction and eliminate the lack of a random search direction,making the selection of the global optimal position more objective and comprehensive,and further improving the convergence of the algorithm.The MOPSO-MS is tested against seven other algorithms on the ZDT and DTLZ test functions,and the results show that the MOPSO-MS has significant advantages in terms of convergence and distributivity. 展开更多
关键词 multi-objective particle swarm optimization(MOPSO) spatially crowding congestion distance differential guidance weight hierarchical selection of global optimum
下载PDF
Optimizing the Multi-Objective Discrete Particle Swarm Optimization Algorithm by Deep Deterministic Policy Gradient Algorithm
13
作者 Sun Yang-Yang Yao Jun-Ping +2 位作者 Li Xiao-Jun Fan Shou-Xiang Wang Zi-Wei 《Journal on Artificial Intelligence》 2022年第1期27-35,共9页
Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains ... Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains to be determined.The present work aims to probe into this topic.Experiments showed that the DDPG can not only quickly improve the convergence speed of MODPSO,but also overcome the problem of local optimal solution that MODPSO may suffer.The research findings are of great significance for the theoretical research and application of MODPSO. 展开更多
关键词 Deep deterministic policy gradient multi-objective discrete particle swarm optimization deep reinforcement learning machine learning
下载PDF
Hybrid optimization algorithm based on chaos,cloud and particle swarm optimization algorithm 被引量:29
14
作者 Mingwei Li Haigui Kang +1 位作者 Pengfei Zhou Weichiang Hong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期324-334,共11页
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ... As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters. 展开更多
关键词 particle swarm optimization(PSO) chaos theory cloud model hybrid optimization
下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
15
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
下载PDF
Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm 被引量:1
16
作者 Najad Ayyash Farzad Hejazi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期455-474,共20页
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther... Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration. 展开更多
关键词 hybrid optimization algorithm STRUCTURES EARTHQUAKE seismic damper devices particle swarm optimization method gravitational search algorithm
下载PDF
A Hybrid Particle Swarm Optimization to Forecast Implied Volatility Risk
17
作者 Kais Tissaoui Sahbi Boubaker +2 位作者 Waleed Saud Alghassab Taha Zaghdoudi Jamel Azibi 《Computers, Materials & Continua》 SCIE EI 2022年第11期4291-4309,共19页
The application of optimization methods to prediction issues is a continually exploring field.In line with this,this paper investigates the connectedness between the infected cases of COVID-19 and US fear index from a... The application of optimization methods to prediction issues is a continually exploring field.In line with this,this paper investigates the connectedness between the infected cases of COVID-19 and US fear index from a forecasting perspective.The complex characteristics of implied volatility risk index such as non-linearity structure,time-varying and nonstationarity motivate us to apply a nonlinear polynomial Hammerstein model with known structure and unknown parameters.We use the Hybrid Particle Swarm Optimization(HPSO)tool to identify the model parameters of nonlinear polynomial Hammerstein model.Findings indicate that,following a nonlinear polynomial behaviour cascaded to an autoregressive with exogenous input(ARX)behaviour,the fear index in US financial market is significantly affected by COVID-19-infected cases in the US,COVID-19-infected cases in the world and COVID-19-infected cases in China,respectively.Statistical performance indicators provided by the developed models show that COVID-19-infected cases in the US are particularly powerful in predicting the Cboe volatility index compared to COVID-19-infected cases in the world and China(MAPE(2.1013%);R2(91.78%)and RMSE(0.6363 percentage points)).The proposed approaches have also shown good convergence characteristics and accurate fits of the data. 展开更多
关键词 Forecasting Cboe’s volatility index COVID-19 pandemic nonlinear polynomial hammerstein model hybrid particle swarm optimization
下载PDF
Hybrid Multi-Object Optimization Method for Tapping Center Machines
18
作者 Ping-Yueh Chang Fu-I Chou +1 位作者 Po-Yuan Yang Shao-Hsien Chen 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期23-38,共16页
This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the r... This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the rigid tapping parameters and minimize the synchronization errors and cycle times of computer numerical control(CNC)machines.First,rigid tapping parameters and uniform(including 41-level and 19-level)layouts were adopted to collect representative data for modeling.Next,ANFIS was used to build the model for the collected 41-level and 19-level uniform layout experiment data.In tapping center machines,the synchronization errors and cycle times are important consid-erations,so these two objects were used to build the ANFIS models.Then,a MOPSO algorithm was used to search for the optimal parameter combinations for the two ANFIS models simultaneously.The experimental results showed that the proposed method obtains suitable parameter values and optimal parameter combinations compared with the nonsystematic method.Additionally,the optimal parameter combination was used to optimize existing CNC tools during the commissioning process.Adjusting the proportional and integral gains of the spindle could improve resistance to deformation during rigid tapping.The posi-tion gain and prefeedback coefficient can reduce the synchronization errors significantly,and the acceleration and deceleration times of the spindle affect both the machining time and synchronization errors.The proposed method can quickly and accurately minimize synchronization errors from 107 to 19.5 pulses as well as the processing time from 3,600 to 3,248 ms;it can also shorten the machining time significantly and reduce simultaneous errors to improve tapping yield,there-by helping factories achieve carbon reduction. 展开更多
关键词 Tapping center machine uniform design adaptive network-based fuzzy inference system(ANFIS) multi-objective particle swarm optimizer
下载PDF
Optimization of Thermal Aware VLSI Non-Slicing Floorplanning Using Hybrid Particle Swarm Optimization Algorithm-Harmony Search Algorithm
19
作者 Sivaranjani Paramasivam Senthilkumar Athappan +1 位作者 Eswari Devi Natrajan Maheswaran Shanmugam 《Circuits and Systems》 2016年第5期562-573,共12页
Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimat... Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimating the positions and shapes of the modules. A high packing density, small feature size and high clock frequency make the Integrated Circuit (IC) to dissipate large amount of heat. So, in this paper, a methodology is presented to distribute the temperature of the module on the layout while simultaneously optimizing the total area and wirelength by using a hybrid Particle Swarm Optimization-Harmony Search (HPSOHS) algorithm. This hybrid algorithm employs diversification technique (PSO) to obtain global optima and intensification strategy (HS) to achieve the best solution at the local level and Modified Corner List algorithm (MCL) for floorplan representation. A thermal modelling tool called hotspot tool is integrated with the proposed algorithm to obtain the temperature at the block level. The proposed algorithm is illustrated using Microelectronics Centre of North Carolina (MCNC) benchmark circuits. The results obtained are compared with the solutions derived from other stochastic algorithms and the proposed algorithm provides better solution. 展开更多
关键词 VLSI Non-Slicing Floorplan Modified Corner List (MCL) Algorithm hybrid particle swarm optimization-Harmony Search Algorithm (HPSOHS)
下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
20
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部