The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then t...The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.展开更多
A neutrosophic multi-valued set(NMVS)is a crucial representation for true,false,and indeterminate multivalued information.Then,a consistent single-valued neutrosophic set(CSVNS)can effectively reflect the mean and con...A neutrosophic multi-valued set(NMVS)is a crucial representation for true,false,and indeterminate multivalued information.Then,a consistent single-valued neutrosophic set(CSVNS)can effectively reflect the mean and consistency degree of true,false,and indeterminate multi-valued sequences and solve the operational issues between different multi-valued sequence lengths in NMVS.However,there has been no research on consistent single-valued neutrosophic similarity measures in the existing literature.This paper proposes cotangent similarity measures and weighted cotangent similarity measures between CSVNSs based on cotangent function in the neutrosophic multi-valued setting.The cosine similarity measures showthe cosine of the angle between two vectors projected into amultidimensional space,rather than their distance.The cotangent similaritymeasures in this study can alleviate several shortcomings of cosine similarity measures in vector space to a certain extent.Then,a decisionmaking approach is presented in viewof the established cotangent similarity measures in the case of NMVSs.Finally,the developed decision-making approach is applied to selection problems of potential cars.The proposed approach has obtained two different results,which have the same sort sequence as the compared literature.The decision results prove its validity and effectiveness.Meantime,it also provides a new manner for neutrosophic multi-valued decision-making issues.展开更多
From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the de...From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the decision is taken according to the values. The validity and scientific nature of the given is proven.展开更多
The simplified neutrosophic number(SNN)can represent uncertain,imprecise,incomplete,and inconsistent information that exists in scientific,technological,and engineering fields.Hence,it is a useful tool for describing ...The simplified neutrosophic number(SNN)can represent uncertain,imprecise,incomplete,and inconsistent information that exists in scientific,technological,and engineering fields.Hence,it is a useful tool for describing truth,falsity,and indeterminacy information in multiple attribute decision-making(MADM)problems.To suit decision makers’preference selection,the operational flexibility of aggregation operators shows its importance in dealing with the flexible decision-making problems in the SNN environment.To solve this problem,this paper develops the Aczel-Alsina aggregation operators of SNNs for MADM problems in view of the Aczel-Alsina operational flexibility.First,we define the Aczel-Alsina operations of SNNs.Then,the Aczel-Alsina aggregation operators of SNNs are presented based on the defined Aczel-Alsina operations of SNNs.Next,a MADM method is established using the proposed aggregation operators under the SNN environment.Lastly,an illustrative example about slope treatment scheme choices is provided to indicate the practicality and efficiency of the established method.By comparison with the existing relative MADM methods,the results show that the established MADM method can overcome the insufficiency of decision flexibility in the existing MADM methods and demonstrate the metric of flexible decision-making.展开更多
The TODIM(an acronym in Portuguese for interactive and multiple attribute decision making) method is a valuable tool to solve the multiple attribute decision making(MADM) problems considering the behavior of the decis...The TODIM(an acronym in Portuguese for interactive and multiple attribute decision making) method is a valuable tool to solve the multiple attribute decision making(MADM) problems considering the behavior of the decision maker(DM), while it cannot be used to handle the problem with unknown weight information on attributes. In this paper, a novel method based on the classical TODIM method is proposed to solve the hybrid MADM problems with unknown weight information on attributes,in which attribute values are represented in four different formats:crisp numbers, interval numbers, triangular fuzzy numbers and trapezoidal fuzzy numbers. Firstly, the positive-ideal alternative and negative-ideal alternative are determined, and the gain and loss matrices are constructed by calculating the gain and loss of each alternative relatived to the ideal alternatives concerning each attribute based on different distance calculation formulas, which may avoid the information missing or information distortion in the process of unifying multiform attribute values into a certain representation form. Secondly, an optimization model based on the maximizing deviation(MD) method, by which the attribute weights can be determined, is established for the TODIM method. Further, the calculation steps to solve the hybrid MADM problems are given. Finally, two numerical examples are presented to illustrate the usefulness of the proposed method, and the results show that the DM's psychological behavior, attribute weights and the transformed information would highly affect the ranking orders of alternatives.展开更多
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.
文摘A neutrosophic multi-valued set(NMVS)is a crucial representation for true,false,and indeterminate multivalued information.Then,a consistent single-valued neutrosophic set(CSVNS)can effectively reflect the mean and consistency degree of true,false,and indeterminate multi-valued sequences and solve the operational issues between different multi-valued sequence lengths in NMVS.However,there has been no research on consistent single-valued neutrosophic similarity measures in the existing literature.This paper proposes cotangent similarity measures and weighted cotangent similarity measures between CSVNSs based on cotangent function in the neutrosophic multi-valued setting.The cosine similarity measures showthe cosine of the angle between two vectors projected into amultidimensional space,rather than their distance.The cotangent similaritymeasures in this study can alleviate several shortcomings of cosine similarity measures in vector space to a certain extent.Then,a decisionmaking approach is presented in viewof the established cotangent similarity measures in the case of NMVSs.Finally,the developed decision-making approach is applied to selection problems of potential cars.The proposed approach has obtained two different results,which have the same sort sequence as the compared literature.The decision results prove its validity and effectiveness.Meantime,it also provides a new manner for neutrosophic multi-valued decision-making issues.
文摘From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the decision is taken according to the values. The validity and scientific nature of the given is proven.
基金funded by the National Natural Science Foundation of China(No.42177117)Zhejiang Provincial Natural Science Foundation(No.LQ16D020001).
文摘The simplified neutrosophic number(SNN)can represent uncertain,imprecise,incomplete,and inconsistent information that exists in scientific,technological,and engineering fields.Hence,it is a useful tool for describing truth,falsity,and indeterminacy information in multiple attribute decision-making(MADM)problems.To suit decision makers’preference selection,the operational flexibility of aggregation operators shows its importance in dealing with the flexible decision-making problems in the SNN environment.To solve this problem,this paper develops the Aczel-Alsina aggregation operators of SNNs for MADM problems in view of the Aczel-Alsina operational flexibility.First,we define the Aczel-Alsina operations of SNNs.Then,the Aczel-Alsina aggregation operators of SNNs are presented based on the defined Aczel-Alsina operations of SNNs.Next,a MADM method is established using the proposed aggregation operators under the SNN environment.Lastly,an illustrative example about slope treatment scheme choices is provided to indicate the practicality and efficiency of the established method.By comparison with the existing relative MADM methods,the results show that the established MADM method can overcome the insufficiency of decision flexibility in the existing MADM methods and demonstrate the metric of flexible decision-making.
基金supported by the Ministry of Education Project of Humanities and Social Sciences(13XJC630011)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20130203120024)+1 种基金the Soft Science Project of Shaanxi Province(2013KRZ25)the Xi’an Science and Technology Plan Projects(SF1404)
文摘The TODIM(an acronym in Portuguese for interactive and multiple attribute decision making) method is a valuable tool to solve the multiple attribute decision making(MADM) problems considering the behavior of the decision maker(DM), while it cannot be used to handle the problem with unknown weight information on attributes. In this paper, a novel method based on the classical TODIM method is proposed to solve the hybrid MADM problems with unknown weight information on attributes,in which attribute values are represented in four different formats:crisp numbers, interval numbers, triangular fuzzy numbers and trapezoidal fuzzy numbers. Firstly, the positive-ideal alternative and negative-ideal alternative are determined, and the gain and loss matrices are constructed by calculating the gain and loss of each alternative relatived to the ideal alternatives concerning each attribute based on different distance calculation formulas, which may avoid the information missing or information distortion in the process of unifying multiform attribute values into a certain representation form. Secondly, an optimization model based on the maximizing deviation(MD) method, by which the attribute weights can be determined, is established for the TODIM method. Further, the calculation steps to solve the hybrid MADM problems are given. Finally, two numerical examples are presented to illustrate the usefulness of the proposed method, and the results show that the DM's psychological behavior, attribute weights and the transformed information would highly affect the ranking orders of alternatives.