Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for ...Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.展开更多
A hybrid optical switch (HOS) with physical layer of wavelength division multiplexing and optical code division multiplexing (WDM/OCDM) scheme is proposed. An additional feature to the HOS than optical cross conne...A hybrid optical switch (HOS) with physical layer of wavelength division multiplexing and optical code division multiplexing (WDM/OCDM) scheme is proposed. An additional feature to the HOS than optical cross connect (OXC) is that the controller can process requests for both circuit establishment and burst scheduling. In our study, the measurement criteria of HOS are the blocking probability, probability of error, and probability of outage. To simplify the analysis, no distinction is made between a circuit in progress and a burst in progress. Moreover, a minimum fit (MinF) resource allocation strategy is applied in order to increase the bandwidth efficiency and control the multiplexing interference of the OCDM. A 2D Markov model for the HOS is presented using the MinF strategy. Numerical results reveal that the code parameters and the resource allocation strategy greatly affect the performance. Certain periority can be achieved by assigning shorter codes to high periority users and longer codes to low periority users. Also, the probability of error and outage are reduced bv aonling the MinF strategy.展开更多
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2012CB315800the National Natural Science Foundation of China under Grants No.61275077,No.61071117,No.61171158,No.61102131+1 种基金the Natural Science Foundation Project of CQ,CSTC under GrantsNo.2009BB2285,No.2008BB2414,No.2010BB2413,No.2010BB2409,No.2010BB2413the Projects of the Education Council of Chongqing under Grants No.KJ080513,No.KJ080522,No.KJ110519,No.KJ110527
文摘Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.
文摘A hybrid optical switch (HOS) with physical layer of wavelength division multiplexing and optical code division multiplexing (WDM/OCDM) scheme is proposed. An additional feature to the HOS than optical cross connect (OXC) is that the controller can process requests for both circuit establishment and burst scheduling. In our study, the measurement criteria of HOS are the blocking probability, probability of error, and probability of outage. To simplify the analysis, no distinction is made between a circuit in progress and a burst in progress. Moreover, a minimum fit (MinF) resource allocation strategy is applied in order to increase the bandwidth efficiency and control the multiplexing interference of the OCDM. A 2D Markov model for the HOS is presented using the MinF strategy. Numerical results reveal that the code parameters and the resource allocation strategy greatly affect the performance. Certain periority can be achieved by assigning shorter codes to high periority users and longer codes to low periority users. Also, the probability of error and outage are reduced bv aonling the MinF strategy.