The trajectory related and Direct Current(DC)Electromagnetic Interference(EMI)of lithium battery,fuel cell and photovoltaic modules has a great influence on the small-scale Unmanned Aerial Vehicle(UAV)airborne magneto...The trajectory related and Direct Current(DC)Electromagnetic Interference(EMI)of lithium battery,fuel cell and photovoltaic modules has a great influence on the small-scale Unmanned Aerial Vehicle(UAV)airborne magnetometer and is hard to be shielded,calibrated or filtered.Besides,the mechanisms underlying the DC EMI have been rarely investigated yet.To cope with this problem,this paper systematically studies the EMI models,and proposes an online 3-layer EMI reduction scheme.First,EMI coupled with UAV motion model and hybrid power system is established.Second,the mechanism EMI models of hybrid power system are established and verified based on the proposed concept“equivalent current”.Third,an online 3-layer EMI reduction scheme is proposed,including battery layer,trajectory planning layer and energy management layer.In the first main layer,EMI self-cancellation is realized by rotating battery inclinations and symmetrical circuits.In response to errors,the trajectory planning layer reduces the EMI intensity by optimizing an optimal trajectory,while the energy management layer prioritizes power allocation to power sources that can produce small and stable EMI.Simulation results of climb,level flight and descent illustrate the efficaciousness and applicability of the proposed online 3-layer EMI reduction scheme.展开更多
The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art ...The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.展开更多
In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid...In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid system,is given to the grid at the Point of Common Coupling(PCC).A boost converter along with perturb and observe(P&O)algorithm is utilized in this system to obtain a constant link voltage.In contrast,the link voltage of the wind energy conversion system(WECS)is retained with the assistance of a Proportional Integral(PI)controller.The grid synchronization is tainted with the assis-tance of the d-q theory.For the analysis of faults like islanding,line-ground,and line-line fault,the ANN is utilized.The voltage signal is observed at the PCC,and the Discrete Wavelet Transform(DWT)is employed to obtain different features.Based on the collected features,the ANN classifies the faults in an effi-cient manner.The simulation is done in MATLAB and the results are also validated through the hardware implementation.Detailed fault analysis is carried out and the results are compared with the existing techniques.Finally,the Total harmonic distortion(THD)is lessened by 4.3%by using the proposed methodology.展开更多
Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monito...Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.展开更多
Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on mult...Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.展开更多
For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor ...For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency.展开更多
Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system...Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.展开更多
This paper presents a current control method for a shunt hybrid active power filter (HAPF) using recursive integral PI algorithm. The method improves the performance of the HAPF system by reducing the influence of d...This paper presents a current control method for a shunt hybrid active power filter (HAPF) using recursive integral PI algorithm. The method improves the performance of the HAPF system by reducing the influence of detection accuracy, time delay of instruction current calculation and phase displacement of output filter. Fuzzy logic based set-point weighing algorithm is combined in the control scheme to enhance its robustness and anti-interference ability. The proposed algorithm is easy to implement for engineering applications and easy to compute. Experiment results have verified the validity of the proposed controller. Furthermore, the proposed recursive integral PI algorithm can also be applied in the control of periodic current as in AC drivers.展开更多
Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to com...Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to complement the electricity gap. In this paper,a new structure of megawatt-class PV system integrating battery at DC-bus (DC: direct current) is proposed to be used in hydro/PV hybrid power system,and 4 main designing considerations and several key equipments are discussed. In 2011,a 2 MWp PV station with the proposed structure was built up in Yushu,China. From stability analysis,the station shows a strong stability under load cut-in/off and solar irradiance's fluctuation.展开更多
Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity...Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity of optimal scheduling processes were obtained by calculating the daily runoff process within three typical years, and a large number of simulated daily runoff processes were obtained using the progressive optimality algorithm (POA) in combination with the genetic algorithm (GA). After analyzing the optimal scheduling processes, the corresponding scheduling rules were determined, and the practical formulas were obtained. These rules can make full use of the rolling runoff forecast and carry out the rolling scheduling. Compared with the optimized results, the maximum relative difference of the annual power generation obtained by the scheduling rules is no more than 1%. The effectiveness and practical applicability of the scheduling rules are demonstrated by a case study. This study provides a new perspective for formulating the rules of power generation dispatching.展开更多
Research on a hybrid system of a crane is a focus which considers environmental protection and energy saving. A new environmental protection and energy saving hybrid system of tyre crane, which utilizes supercapacitor...Research on a hybrid system of a crane is a focus which considers environmental protection and energy saving. A new environmental protection and energy saving hybrid system of tyre crane, which utilizes supercapacitors as the energy store device, is presented. Analyzing the principle of supercapacitors, the model of the crane's hybrid system is set up in this paper, and the model of main blocks are established. Through simulation analyzing, the energy saving result of the new hybrid system is obtained, and the good application value of the new hybrid system is explained.展开更多
An inverse system method based optimal control strategy was proposed for the shunt hybrid active power filter (SHAPF) to enhance its harmonic elimination performance. Based on the inverse system method, the d-axis a...An inverse system method based optimal control strategy was proposed for the shunt hybrid active power filter (SHAPF) to enhance its harmonic elimination performance. Based on the inverse system method, the d-axis and q-axis current dynamics of the SHAPF system were decoupled and linearized into two pseudolinear subsystems. Then, an optimal feedback controUer was designed for the pseudolinear system, and the stability condition of the resulting zero dynamics was presented. Under the control strategy, the current dynamics can asymptotically converge to their reference states and the zero dynamics can be bounded. Simulation results show that the proposed control strategy is robust against load variations and system parameter mismatches, its steady-state performance is better than that of the traditional linear control strategy.展开更多
After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy ...After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy recovery system is discussed,which is validated and evaluated by simulation.The simulation results show that the proposed control strategy can achieve balance of the power and keep the state of charge(SOC) of ultra capacitor in a reasonable range,and the fuel consumption can be reduced by about 20.8% compared with the conventional diesel forklift.Finally,the feasibility of the simulation results is experimentally verified based on the lifting energy recovery system.展开更多
Studied the harmonic control of the 6 kV power grid in a coal mine substation.Taking harmonic suppression and reactive power compensation into account, and complyingwith the economic and efficient technical line of th...Studied the harmonic control of the 6 kV power grid in a coal mine substation.Taking harmonic suppression and reactive power compensation into account, and complyingwith the economic and efficient technical line of the smart grid, a new hybrid activefilter was proposed and applied to the power grid in the coal mine with the advantagessuch as large capacity, low cost and low loss.In order to improve detection speed and reducethe succeeding errors to improve the filtering performance of the active power filter,the DFT (Discrete Fourier Transform) sliding window algorithm based on coordinatetransformation and improved hysteresis control method was proposed.The Matlab simulationresults show that the hybrid active filter is satisfactory, can improve the grid powerfactor and can meet the requirements of improving the power quality in the coal mine.展开更多
A system model is established to analyze the dynamic performance of an integrated starter and generator (ISG) hybrid power shafting. The model couples the electromechanical coupling shaft dynamics, the bearing hydro...A system model is established to analyze the dynamic performance of an integrated starter and generator (ISG) hybrid power shafting. The model couples the electromechanical coupling shaft dynamics, the bearing hydrodynamic lubrication and the engine block stiffness. The model is com- pared with the model based on ADAMS or the model neglecting the bearing hydrodynamics. The bearing eccentricity and the oil film pressure have been calculated under different hybrid conditions or at the different motor power levels. It' s found that the bearing hydrodynamics decreases the cal- culation results of the bearing peak load. Changes of the hybrid conditions or the motor power have no significant effect on the main bearing, but have impact on the motor bearing. A hybrid power sys- tem composed of a 1.6 L engine and a 45 kW ISG motor can operate safely.展开更多
To improve the total throughput of the uplink orthogonal frequency division multiple access system,a low complexity hybrid power distribution(HPD) combined with subcarrier allocation scheme is proposed.For the fairn...To improve the total throughput of the uplink orthogonal frequency division multiple access system,a low complexity hybrid power distribution(HPD) combined with subcarrier allocation scheme is proposed.For the fairness mechanism for the subcarrier,the inter-cell interference is first analyzed to calculate the capacity of the multi-cell.The user selects the subcarrier with the largest channel gain.Based on the above subcarrier allocation scheme,a new kind of HPD scheme is proposed,which adopts the waterfilling-power-distributed scheme and the equal-power-distributed scheme in the cell-boundary and the cellcenter,respectively.Simulation results show that compared with the waterfilling-power-distributed scheme in the whole cell,the proposed HPD scheme decreases the system complexity significantly,meanwhile its capacity is 2% higher than that of the equal-powerdistributed scheme over the same subcarrier allocation.展开更多
<span style="font-family:Verdana;">Develop</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;&qu...<span style="font-family:Verdana;">Develop</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ment</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> of renewable energy (RE) and mitigation of carbon dioxide, as the two largest climate action initiatives are the most challenging factors for new generation green data center (GDC). Reduction of conventional electricity consumption as well as cost of electricity (COE) with preferred quality</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of service (QoS) has been recognized as the interesting research topic in Information and Communication Technology (ICT) sector. Moreover, it becomes challenging to design a large-scale sustainable GDC with standalone RE supply. This paper gives spotlight on hybrid energy supply solution for the GDC to reduce grid electricity usage and minimum net system cost. The proposed framework includes RE source such as solar photovoltaic, wind turbine and non-renewable energy sources as Disel Generator (DG) and Battery. A hybrid optimization model is designed using HOMER software for cost assessment and energy evaluation to validate the effectiveness of the suggested scheme focusing on eco-friendly implication.</span></span></span>展开更多
Afghanistan has a tremendous resource potential of renewable energy especially solar and the wind. Therefore, utilization of these resources has a special rule for the remote areas where access to the electrical grid ...Afghanistan has a tremendous resource potential of renewable energy especially solar and the wind. Therefore, utilization of these resources has a special rule for the remote areas where access to the electrical grid or secure power supply is a dream for most of the people. This paper presents a feasibility and usefulness of hybrid power generation based on PV/wind/diesel generator for an off-grid rural village that feeds the load at a rate of average 7.9 kWh/day with 1.32 kW peak load. GsT (geospatial toolkit) is used to obtain the solar and wind data of the site. Windographer software is used to analyze the wind resource data of the site. HOMER Pro software package is used to select the suitable and reliable hybrid generation system and calculate the optimal capacities and costs of the components. Through the study, it is found that this state of the art adaptation could provide vast opportunities for off-grid rural communities such as in Afghanistan where enough high penetration of renewable energy is available.展开更多
In this study, an off grid wind-solar hybrid power generation system was established at Afyon Kocatepe University to meet the energy need of lighting system of three different laboratories. It is planned to efficientl...In this study, an off grid wind-solar hybrid power generation system was established at Afyon Kocatepe University to meet the energy need of lighting system of three different laboratories. It is planned to efficiently use the energy obtained from the designed hybrid power generation system. For this purpose, PIC 16F877 was used in controlling of lighting load of laboratories. The off-grid wind-solar hybrid power generation system consists of 570 W 24 V mono crystal solar panels, 600 W wind power generation system and accumulator groups. The load control circuit made with PIC 16F877 is designed in a manner that will control the lighting armature groups individually activate and deactivate the armature groups according to intensity of illumination in environment. Besides, separately from generation and storing units constituting the hybrid power generation system, data in kWh are recorded by means of software in 10 seconds intervals. With the obtained power generation and storing data, analyzing of power consumption data when the load control system in active or passive position is made. According to analysis results, with controlling of lighting load and using of energy obtained from off grid wind-solar hybrid power generation system, 20.6% energy saving has been ensured.展开更多
In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. A...In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. As the difference of hybrid energy source in stability and economy, thus, this paper focuses on the network with hybrid energy source, and design the utility of each user in the hybrid energy source system from the perspective of stability, economy and environment pollution. A dual power allocation algorithm based on Stackelberg game to maximize the utilities of users and networks is proposed. In addition, an iteration method is proposed which enables all players to reach the Stackelberg equilibrium(SE). Simulation results validate that players can reach the SE and the utilities of users and networks can be maximization, and the green energy can be efficiently used.展开更多
文摘The trajectory related and Direct Current(DC)Electromagnetic Interference(EMI)of lithium battery,fuel cell and photovoltaic modules has a great influence on the small-scale Unmanned Aerial Vehicle(UAV)airborne magnetometer and is hard to be shielded,calibrated or filtered.Besides,the mechanisms underlying the DC EMI have been rarely investigated yet.To cope with this problem,this paper systematically studies the EMI models,and proposes an online 3-layer EMI reduction scheme.First,EMI coupled with UAV motion model and hybrid power system is established.Second,the mechanism EMI models of hybrid power system are established and verified based on the proposed concept“equivalent current”.Third,an online 3-layer EMI reduction scheme is proposed,including battery layer,trajectory planning layer and energy management layer.In the first main layer,EMI self-cancellation is realized by rotating battery inclinations and symmetrical circuits.In response to errors,the trajectory planning layer reduces the EMI intensity by optimizing an optimal trajectory,while the energy management layer prioritizes power allocation to power sources that can produce small and stable EMI.Simulation results of climb,level flight and descent illustrate the efficaciousness and applicability of the proposed online 3-layer EMI reduction scheme.
基金Supported by National Natural Science Foundation of China (Grant Nos.52222215,52072051)Fundamental Research Funds for the Central Universities in China (Grant No.2023CDJXY-025)Chongqing Municipal Natural Science Foundation of China (Grant No.CSTB2023NSCQ-JQX0003)。
文摘The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control.
文摘In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid system,is given to the grid at the Point of Common Coupling(PCC).A boost converter along with perturb and observe(P&O)algorithm is utilized in this system to obtain a constant link voltage.In contrast,the link voltage of the wind energy conversion system(WECS)is retained with the assistance of a Proportional Integral(PI)controller.The grid synchronization is tainted with the assis-tance of the d-q theory.For the analysis of faults like islanding,line-ground,and line-line fault,the ANN is utilized.The voltage signal is observed at the PCC,and the Discrete Wavelet Transform(DWT)is employed to obtain different features.Based on the collected features,the ANN classifies the faults in an effi-cient manner.The simulation is done in MATLAB and the results are also validated through the hardware implementation.Detailed fault analysis is carried out and the results are compared with the existing techniques.Finally,the Total harmonic distortion(THD)is lessened by 4.3%by using the proposed methodology.
文摘Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.
基金Foundation of China(No.52067013)the Key Natural Science Fund Project of Gansu Provincial Department of Science and Technology(No.21JR7RA280)+1 种基金the Tianyou Innovation Team Science Foundation of Intelligent Power Supply and State Perception for Rail Transit(No.TY202010)the Natural Science Foundation of Gansu Province(No.20JR5RA395).
文摘Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.
文摘For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency.
文摘Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.
基金supported by the National Natural Science Foundation of China (No.60774043)
文摘This paper presents a current control method for a shunt hybrid active power filter (HAPF) using recursive integral PI algorithm. The method improves the performance of the HAPF system by reducing the influence of detection accuracy, time delay of instruction current calculation and phase displacement of output filter. Fuzzy logic based set-point weighing algorithm is combined in the control scheme to enhance its robustness and anti-interference ability. The proposed algorithm is easy to implement for engineering applications and easy to compute. Experiment results have verified the validity of the proposed controller. Furthermore, the proposed recursive integral PI algorithm can also be applied in the control of periodic current as in AC drivers.
基金Chinese Academy of Science (No.KGCX2- YW- 366)Ministry of Science and Technology(No. 2011AA05A106)
文摘Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to complement the electricity gap. In this paper,a new structure of megawatt-class PV system integrating battery at DC-bus (DC: direct current) is proposed to be used in hydro/PV hybrid power system,and 4 main designing considerations and several key equipments are discussed. In 2011,a 2 MWp PV station with the proposed structure was built up in Yushu,China. From stability analysis,the station shows a strong stability under load cut-in/off and solar irradiance's fluctuation.
基金supported by the National Key Basic Research Development Program of China (Grant No. 2002CCA00700)
文摘Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity of optimal scheduling processes were obtained by calculating the daily runoff process within three typical years, and a large number of simulated daily runoff processes were obtained using the progressive optimality algorithm (POA) in combination with the genetic algorithm (GA). After analyzing the optimal scheduling processes, the corresponding scheduling rules were determined, and the practical formulas were obtained. These rules can make full use of the rolling runoff forecast and carry out the rolling scheduling. Compared with the optimized results, the maximum relative difference of the annual power generation obtained by the scheduling rules is no more than 1%. The effectiveness and practical applicability of the scheduling rules are demonstrated by a case study. This study provides a new perspective for formulating the rules of power generation dispatching.
基金This paper is supported by the Youth Chenguang Project of Wuhan under Grant No.20045006071-29
文摘Research on a hybrid system of a crane is a focus which considers environmental protection and energy saving. A new environmental protection and energy saving hybrid system of tyre crane, which utilizes supercapacitors as the energy store device, is presented. Analyzing the principle of supercapacitors, the model of the crane's hybrid system is set up in this paper, and the model of main blocks are established. Through simulation analyzing, the energy saving result of the new hybrid system is obtained, and the good application value of the new hybrid system is explained.
基金Project(61174068)supported by the National Natural Science Foundation of China
文摘An inverse system method based optimal control strategy was proposed for the shunt hybrid active power filter (SHAPF) to enhance its harmonic elimination performance. Based on the inverse system method, the d-axis and q-axis current dynamics of the SHAPF system were decoupled and linearized into two pseudolinear subsystems. Then, an optimal feedback controUer was designed for the pseudolinear system, and the stability condition of the resulting zero dynamics was presented. Under the control strategy, the current dynamics can asymptotically converge to their reference states and the zero dynamics can be bounded. Simulation results show that the proposed control strategy is robust against load variations and system parameter mismatches, its steady-state performance is better than that of the traditional linear control strategy.
基金Project(2013BAF07B02)supported by National Science and Technology Support Program of China
文摘After analyzing the working condition of the conventional diesel forklift,an energy recovery system in hybrid forklift is considered and its simulation model is built.Then,the control strategy for the proposed energy recovery system is discussed,which is validated and evaluated by simulation.The simulation results show that the proposed control strategy can achieve balance of the power and keep the state of charge(SOC) of ultra capacitor in a reasonable range,and the fuel consumption can be reduced by about 20.8% compared with the conventional diesel forklift.Finally,the feasibility of the simulation results is experimentally verified based on the lifting energy recovery system.
文摘Studied the harmonic control of the 6 kV power grid in a coal mine substation.Taking harmonic suppression and reactive power compensation into account, and complyingwith the economic and efficient technical line of the smart grid, a new hybrid activefilter was proposed and applied to the power grid in the coal mine with the advantagessuch as large capacity, low cost and low loss.In order to improve detection speed and reducethe succeeding errors to improve the filtering performance of the active power filter,the DFT (Discrete Fourier Transform) sliding window algorithm based on coordinatetransformation and improved hysteresis control method was proposed.The Matlab simulationresults show that the hybrid active filter is satisfactory, can improve the grid powerfactor and can meet the requirements of improving the power quality in the coal mine.
基金Supported by the National Natural Science Foundation of China( 51105032)
文摘A system model is established to analyze the dynamic performance of an integrated starter and generator (ISG) hybrid power shafting. The model couples the electromechanical coupling shaft dynamics, the bearing hydrodynamic lubrication and the engine block stiffness. The model is com- pared with the model based on ADAMS or the model neglecting the bearing hydrodynamics. The bearing eccentricity and the oil film pressure have been calculated under different hybrid conditions or at the different motor power levels. It' s found that the bearing hydrodynamics decreases the cal- culation results of the bearing peak load. Changes of the hybrid conditions or the motor power have no significant effect on the main bearing, but have impact on the motor bearing. A hybrid power sys- tem composed of a 1.6 L engine and a 45 kW ISG motor can operate safely.
基金supported by the National Basic Research Programof China (973 Program) (2007CB310601)the Major Science-Technology Project of Next Generation Wireless Mobile Communication Network (2009ZX03004-001)
文摘To improve the total throughput of the uplink orthogonal frequency division multiple access system,a low complexity hybrid power distribution(HPD) combined with subcarrier allocation scheme is proposed.For the fairness mechanism for the subcarrier,the inter-cell interference is first analyzed to calculate the capacity of the multi-cell.The user selects the subcarrier with the largest channel gain.Based on the above subcarrier allocation scheme,a new kind of HPD scheme is proposed,which adopts the waterfilling-power-distributed scheme and the equal-power-distributed scheme in the cell-boundary and the cellcenter,respectively.Simulation results show that compared with the waterfilling-power-distributed scheme in the whole cell,the proposed HPD scheme decreases the system complexity significantly,meanwhile its capacity is 2% higher than that of the equal-powerdistributed scheme over the same subcarrier allocation.
文摘<span style="font-family:Verdana;">Develop</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ment</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> of renewable energy (RE) and mitigation of carbon dioxide, as the two largest climate action initiatives are the most challenging factors for new generation green data center (GDC). Reduction of conventional electricity consumption as well as cost of electricity (COE) with preferred quality</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of service (QoS) has been recognized as the interesting research topic in Information and Communication Technology (ICT) sector. Moreover, it becomes challenging to design a large-scale sustainable GDC with standalone RE supply. This paper gives spotlight on hybrid energy supply solution for the GDC to reduce grid electricity usage and minimum net system cost. The proposed framework includes RE source such as solar photovoltaic, wind turbine and non-renewable energy sources as Disel Generator (DG) and Battery. A hybrid optimization model is designed using HOMER software for cost assessment and energy evaluation to validate the effectiveness of the suggested scheme focusing on eco-friendly implication.</span></span></span>
文摘Afghanistan has a tremendous resource potential of renewable energy especially solar and the wind. Therefore, utilization of these resources has a special rule for the remote areas where access to the electrical grid or secure power supply is a dream for most of the people. This paper presents a feasibility and usefulness of hybrid power generation based on PV/wind/diesel generator for an off-grid rural village that feeds the load at a rate of average 7.9 kWh/day with 1.32 kW peak load. GsT (geospatial toolkit) is used to obtain the solar and wind data of the site. Windographer software is used to analyze the wind resource data of the site. HOMER Pro software package is used to select the suitable and reliable hybrid generation system and calculate the optimal capacities and costs of the components. Through the study, it is found that this state of the art adaptation could provide vast opportunities for off-grid rural communities such as in Afghanistan where enough high penetration of renewable energy is available.
基金supported by grant number 10-TEF-05 from Afyon Kocatepe University Scientific Research Projects Coordination Unit.
文摘In this study, an off grid wind-solar hybrid power generation system was established at Afyon Kocatepe University to meet the energy need of lighting system of three different laboratories. It is planned to efficiently use the energy obtained from the designed hybrid power generation system. For this purpose, PIC 16F877 was used in controlling of lighting load of laboratories. The off-grid wind-solar hybrid power generation system consists of 570 W 24 V mono crystal solar panels, 600 W wind power generation system and accumulator groups. The load control circuit made with PIC 16F877 is designed in a manner that will control the lighting armature groups individually activate and deactivate the armature groups according to intensity of illumination in environment. Besides, separately from generation and storing units constituting the hybrid power generation system, data in kWh are recorded by means of software in 10 seconds intervals. With the obtained power generation and storing data, analyzing of power consumption data when the load control system in active or passive position is made. According to analysis results, with controlling of lighting load and using of energy obtained from off grid wind-solar hybrid power generation system, 20.6% energy saving has been ensured.
基金supported by the Beijing Natural Science Foundation (4142049)863 project No. 2014AA01A701the Fundamental Research Funds for Central Universities of China No. 2015XS07
文摘In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. As the difference of hybrid energy source in stability and economy, thus, this paper focuses on the network with hybrid energy source, and design the utility of each user in the hybrid energy source system from the perspective of stability, economy and environment pollution. A dual power allocation algorithm based on Stackelberg game to maximize the utilities of users and networks is proposed. In addition, an iteration method is proposed which enables all players to reach the Stackelberg equilibrium(SE). Simulation results validate that players can reach the SE and the utilities of users and networks can be maximization, and the green energy can be efficiently used.