Under the partial shading conditions(PSC)of Photovoltaic(PV)modules in a PV hybrid system,the power output curve exhibits multiple peaks.This often causes traditional maximum power point tracking(MPPT)methods to fall ...Under the partial shading conditions(PSC)of Photovoltaic(PV)modules in a PV hybrid system,the power output curve exhibits multiple peaks.This often causes traditional maximum power point tracking(MPPT)methods to fall into local optima and fail to find the global optimum.To address this issue,a composite MPPT algorithm is proposed.It combines the improved kepler optimization algorithm(IKOA)with the optimized variable-step perturb and observe(OIP&O).The update probabilities,planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized.This adaptation meets the varying needs of the initial and later stages of the iterative process and accelerates convergence.During stochastic exploration,the refined position update formulas enhance diversity and global search capability.The improvements in the algorithmreduces the likelihood of falling into local optima.In the later stages,the OIP&O algorithm decreases oscillation and increases accuracy.compared with cuckoo search(CS)and gray wolf optimization(GWO),simulation tests of the PV hybrid inverter demonstrate that the proposed IKOA-OIP&O algorithm achieves faster convergence and greater stability under static,local and dynamic shading conditions.These results can confirm the feasibility and effectiveness of the proposed PV MPPT algorithm for PV hybrid systems.展开更多
Throughout this paper, we introduce a new hybrid iterative algorithm for finding a common element of the set of common fixed points of a finite family of uniformly asymptotically nonexpansive semigroups and the set of...Throughout this paper, we introduce a new hybrid iterative algorithm for finding a common element of the set of common fixed points of a finite family of uniformly asymptotically nonexpansive semigroups and the set of solutions of an equilibrium problem in the framework of Hilbert spaces. We then prove the strong convergence theorem with respect to the proposed iterative algorithm. Our results in this paper extend and improve some recent known results.展开更多
Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(M...Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(MPP).If the irradiation conditions are uniform,the P-V curve of the PV array has only one peak that is called its MPP.But when the irradiation conditions are non-uniform,the P-V curve has multiple peaks.Each peak represents an MPP for a specific irradiation condition.The highest of all the peaks is called Global Maximum Power Point(GMPP).Under uniform irradiation conditions,there is zero or no partial shading.But the changing irradiance causes a shading effect which is called Partial Shading.Many conventional and soft computing techniques have been in use to harvest solar energy.These techniques perform well under uniform and weak shading conditions but fail when shading conditions are strong.In this paper,a new method is proposed which uses Machine Learning based algorithm called Opposition-Based-Learning(OBL)to deal with partial shading conditions.Simulation studies on different cases of partial shading have proven this technique effective in attaining MPP.展开更多
针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提...针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。展开更多
实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足...实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足。针对这一问题,提出一种基于布谷鸟搜索算法(cuckoo search algorithm, CS)和电导增量法(conductivity increment method, CI)结合的光伏MPPT算法,在算法前期利用布谷鸟搜索算法将大步长和小步长交替使用使得全局搜索能力增强,找到全局最大功率点所处区域附近;在后期,采用步长小、控制精度高的CI进行局部寻优,快速准确地锁定到最大功率点。在MATLAB/Simulink中搭建仿真模型,并与原始布谷鸟搜索算法和粒子群优化(particle swam optimization, PSO)算法进行比较。仿真结果表明,将CS与CI结合的算法使得收敛速度更快,精度更高,稳定状态时功率曲线的波动更小。展开更多
进化类算法和内点法交替迭代的混合算法在求解含电压源换流器的高压直流输电(voltage source converter basedhigh voltage direct current,VSC-HVDC)的交直流系统最优潮流(optimal power flow,OPF)问题时由于截断误差的影响和VSC-HVDC...进化类算法和内点法交替迭代的混合算法在求解含电压源换流器的高压直流输电(voltage source converter basedhigh voltage direct current,VSC-HVDC)的交直流系统最优潮流(optimal power flow,OPF)问题时由于截断误差的影响和VSC-HVDC控制方式的限制,容易发生振荡,因此提出一种基于差分进化(differential evolution,DE)和原—对偶内点法(primal-dual interior point method,PDIPM)的统一混合迭代算法。算法的主要思想是以DE算法为框架,对离散变量进行优化,在DE算法的每一次迭代过程中,采用PDIPM对每个DE个体进行连续变量的优化和适应度评估。由于采用PDIPM进行DE种群适应度评估,无需设定VSC-HVDC的控制方式,因此提高了算法的全局寻优能力。多个算例结果表明,该混合算法数值稳定性高,寻优能力强,能很好地解决含两端、多端、多馈入VSC-HVDC的交直流系统最优潮流问题。展开更多
基金funding from the Graduate Practice Innovation Program of Jiangsu University of Technology(XSJCX23_58)Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Under the partial shading conditions(PSC)of Photovoltaic(PV)modules in a PV hybrid system,the power output curve exhibits multiple peaks.This often causes traditional maximum power point tracking(MPPT)methods to fall into local optima and fail to find the global optimum.To address this issue,a composite MPPT algorithm is proposed.It combines the improved kepler optimization algorithm(IKOA)with the optimized variable-step perturb and observe(OIP&O).The update probabilities,planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized.This adaptation meets the varying needs of the initial and later stages of the iterative process and accelerates convergence.During stochastic exploration,the refined position update formulas enhance diversity and global search capability.The improvements in the algorithmreduces the likelihood of falling into local optima.In the later stages,the OIP&O algorithm decreases oscillation and increases accuracy.compared with cuckoo search(CS)and gray wolf optimization(GWO),simulation tests of the PV hybrid inverter demonstrate that the proposed IKOA-OIP&O algorithm achieves faster convergence and greater stability under static,local and dynamic shading conditions.These results can confirm the feasibility and effectiveness of the proposed PV MPPT algorithm for PV hybrid systems.
文摘Throughout this paper, we introduce a new hybrid iterative algorithm for finding a common element of the set of common fixed points of a finite family of uniformly asymptotically nonexpansive semigroups and the set of solutions of an equilibrium problem in the framework of Hilbert spaces. We then prove the strong convergence theorem with respect to the proposed iterative algorithm. Our results in this paper extend and improve some recent known results.
基金supported by the Xiamen University Malaysia Research Fund XMUMRF Grant No:XMUMRF/2019-C3/IECE/0007(received by R.M.Mehmood)The authors are grateful to the Taif University Researchers Supporting Project Number(TURSP-2020/79),Taif University,Taif,Saudi Arabia for funding this work(received by M.Shorfuzzaman).
文摘Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(MPP).If the irradiation conditions are uniform,the P-V curve of the PV array has only one peak that is called its MPP.But when the irradiation conditions are non-uniform,the P-V curve has multiple peaks.Each peak represents an MPP for a specific irradiation condition.The highest of all the peaks is called Global Maximum Power Point(GMPP).Under uniform irradiation conditions,there is zero or no partial shading.But the changing irradiance causes a shading effect which is called Partial Shading.Many conventional and soft computing techniques have been in use to harvest solar energy.These techniques perform well under uniform and weak shading conditions but fail when shading conditions are strong.In this paper,a new method is proposed which uses Machine Learning based algorithm called Opposition-Based-Learning(OBL)to deal with partial shading conditions.Simulation studies on different cases of partial shading have proven this technique effective in attaining MPP.
基金supported by National Natural Science Foundation of China(No.52067013)Natural Science Foundation of Gansu Province(No.21JR7RA280)。
文摘针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。
文摘进化类算法和内点法交替迭代的混合算法在求解含电压源换流器的高压直流输电(voltage source converter basedhigh voltage direct current,VSC-HVDC)的交直流系统最优潮流(optimal power flow,OPF)问题时由于截断误差的影响和VSC-HVDC控制方式的限制,容易发生振荡,因此提出一种基于差分进化(differential evolution,DE)和原—对偶内点法(primal-dual interior point method,PDIPM)的统一混合迭代算法。算法的主要思想是以DE算法为框架,对离散变量进行优化,在DE算法的每一次迭代过程中,采用PDIPM对每个DE个体进行连续变量的优化和适应度评估。由于采用PDIPM进行DE种群适应度评估,无需设定VSC-HVDC的控制方式,因此提高了算法的全局寻优能力。多个算例结果表明,该混合算法数值稳定性高,寻优能力强,能很好地解决含两端、多端、多馈入VSC-HVDC的交直流系统最优潮流问题。