Friction and wear behavior of AZ91D and its nanocomposites reinforced by different contents of hybrid multi-walled CNTs and nano-SiC particulates under oil lubrication was investigated using a MRS-10P four-ball tribom...Friction and wear behavior of AZ91D and its nanocomposites reinforced by different contents of hybrid multi-walled CNTs and nano-SiC particulates under oil lubrication was investigated using a MRS-10P four-ball tribometer.Friction coefficients and wear rates were measured within a load range of 200-1000 N at a spindle rotary speed of 380 r/min.Worn surface morphologies,phase and element compositions were studied by scanning electron microscope(SEM),X-ray diffraction(XRD)and energy dispersive spectroscopy(EDS),respectively.The mechanism of synergistic effect of CNTs and SiC nanoparticles was discussed.The results indicate that the AZ91D nanocomposites show better wear resistance properties and different wear mechanisms compared with AZ91D.The AZ91D nanocomposites reinforced with 0.5%CNTs and 0.5%nano-SiC have the best tribological capacity.The wear mechanisms for the Mg-based hybrid nanocomposites appear to be a mix-up of micro-ploughing,micro-cutting,slight adhesive wear and delamination.展开更多
The effects of aramid/carbon on tensile properties of multilayered biaxial weft knitted( MBWK) fabric reinforced composites are analyzed by experiments. The tensile tests are inducted by the SHIMADZU AG-250 KNE univer...The effects of aramid/carbon on tensile properties of multilayered biaxial weft knitted( MBWK) fabric reinforced composites are analyzed by experiments. The tensile tests are inducted by the SHIMADZU AG-250 KNE universal material testing machine and Aramis V6 digital image correlation( DIC) technique.More specifically,the composite samples own four hybrid ratios(Na∶ Nc= 12∶ 0,8 ∶ 4,6 ∶ 6 and 4 ∶ 8). The results showed that the aramid/carbon hybrid MBWK fabric reinforced composites showed nearly linear response until reaching the maximum load and the inserting yarns distribution on the surface of MBWK fabrics reinforced composites had a great influence on the strain pattern distribution. Besides,the tensile strength,the tensile modulus and the elongation at breakage of 0° samples and 90° samples increased with the decreasing of aramid/carbon hybrid ratio. In a word,the changes of tensile strength, tensile modulus and elongation at breakage have a lot to do with the difference of aramid/carbon hybrid ratio.展开更多
In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synehronizability and four hybrid ratios under the unified ...In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synehronizability and four hybrid ratios under the unified hybrid network theory framework (UHNTF). Our theory results can not only be applied to judge and analyze dynamic synehronizability for most of complex networks associated with the UHNTF, but also we can flexibly adjust and design different hybrid ratios and sealing exponent to meet actual requirement for the dynanfic characteristics of the UHNTF.展开更多
Single-atom catalysts(SACs)have been widely utilized in electrochemical nitrogen reduction reactions(NRR)due to their high atomic utilization and selectivity.Owing to the unique sp/sp^(2)co-hybridization,graphyne mate...Single-atom catalysts(SACs)have been widely utilized in electrochemical nitrogen reduction reactions(NRR)due to their high atomic utilization and selectivity.Owing to the unique sp/sp^(2)co-hybridization,graphyne materials can offer stable adsorption sites for single metal atoms.To investigate the influence of the sp/sp^(2)hybrid carbon ratio on the electrocatalytic NRR performance of graphyne,a high-throughput screening of 81 catalysts,with27 transition metals loaded on graphyne(GY1),graphdiyne(GY2),and graphtriyne(GY3),was conducted using firstprinciples calculations.The results of the screening revealed that Ti@GY3 exhibits the lowest energy barrier for the rate-determining step(0.32 eV)in NRR.Further,to explore the impact of different sp/sp^(2)-hybridized carbon ratios on the catalytic activity of SACs,the mechanism of nitrogen(N_(2))adsorption,activation,and the comprehensive pathway of NRR on Ti@GY1,Ti@GY2,and Ti@GY3 was systematically investigated.It was found that the ratio of sp/sp^(2)-hybridized carbon can significantly modulate the d-band center of the metal,thus affecting the energy barrier of the rate-determining step in NRR,decreasing from Ti@GY1(0.59 eV)to Ti@GY2(0.49 eV);and further to Ti@GY3(0.32 eV).Additionally,the Hall conductance was found to increase with the bias voltage in the range of 0.4-1 V,as calculated by Nanodcal software,demonstrating an improvement in the conductivity of the SAC.In summary,this work provides theoretical guidance for modulating the electrocatalytic nitrogen reduction activity of SACs by varying the ratio of sp/sp^(2)hybrid carbon,with Ti@GY3 showing potential as an excellent NRR catalyst.展开更多
基金Projects(11272072,11672055)supported by the National Natural Science Foundation of China
文摘Friction and wear behavior of AZ91D and its nanocomposites reinforced by different contents of hybrid multi-walled CNTs and nano-SiC particulates under oil lubrication was investigated using a MRS-10P four-ball tribometer.Friction coefficients and wear rates were measured within a load range of 200-1000 N at a spindle rotary speed of 380 r/min.Worn surface morphologies,phase and element compositions were studied by scanning electron microscope(SEM),X-ray diffraction(XRD)and energy dispersive spectroscopy(EDS),respectively.The mechanism of synergistic effect of CNTs and SiC nanoparticles was discussed.The results indicate that the AZ91D nanocomposites show better wear resistance properties and different wear mechanisms compared with AZ91D.The AZ91D nanocomposites reinforced with 0.5%CNTs and 0.5%nano-SiC have the best tribological capacity.The wear mechanisms for the Mg-based hybrid nanocomposites appear to be a mix-up of micro-ploughing,micro-cutting,slight adhesive wear and delamination.
基金Tianjin Municipal Science and Technology Commission for the Financial Supports,China(No.11ZCKFSF00500)China's General Administration of Quality Supervision,Inspection and Quarantine for the Financial Supports,China(No.201210260)
文摘The effects of aramid/carbon on tensile properties of multilayered biaxial weft knitted( MBWK) fabric reinforced composites are analyzed by experiments. The tensile tests are inducted by the SHIMADZU AG-250 KNE universal material testing machine and Aramis V6 digital image correlation( DIC) technique.More specifically,the composite samples own four hybrid ratios(Na∶ Nc= 12∶ 0,8 ∶ 4,6 ∶ 6 and 4 ∶ 8). The results showed that the aramid/carbon hybrid MBWK fabric reinforced composites showed nearly linear response until reaching the maximum load and the inserting yarns distribution on the surface of MBWK fabrics reinforced composites had a great influence on the strain pattern distribution. Besides,the tensile strength,the tensile modulus and the elongation at breakage of 0° samples and 90° samples increased with the decreasing of aramid/carbon hybrid ratio. In a word,the changes of tensile strength, tensile modulus and elongation at breakage have a lot to do with the difference of aramid/carbon hybrid ratio.
基金The work was supported by the National Natural Science Foundation of China (Grant Nos. 60874087 and 61174151).
文摘In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synehronizability and four hybrid ratios under the unified hybrid network theory framework (UHNTF). Our theory results can not only be applied to judge and analyze dynamic synehronizability for most of complex networks associated with the UHNTF, but also we can flexibly adjust and design different hybrid ratios and sealing exponent to meet actual requirement for the dynanfic characteristics of the UHNTF.
基金financially supported by the National Natural Science Foundation of China(Nos.52301011,52231008,52142304,52177220,52101182 and U23A200767)Hainan Provincial Natural Science Foundation of China(No.524QN226)+2 种基金the Key research and development program of Hainan province(No.ZDYF2022GXJS006)the Starting Research Fund from the Hainan University(No.KYQD(ZR)23026)the International Science&Technology Cooperation Program of Hainan Province(No.GHYF2023007)。
文摘Single-atom catalysts(SACs)have been widely utilized in electrochemical nitrogen reduction reactions(NRR)due to their high atomic utilization and selectivity.Owing to the unique sp/sp^(2)co-hybridization,graphyne materials can offer stable adsorption sites for single metal atoms.To investigate the influence of the sp/sp^(2)hybrid carbon ratio on the electrocatalytic NRR performance of graphyne,a high-throughput screening of 81 catalysts,with27 transition metals loaded on graphyne(GY1),graphdiyne(GY2),and graphtriyne(GY3),was conducted using firstprinciples calculations.The results of the screening revealed that Ti@GY3 exhibits the lowest energy barrier for the rate-determining step(0.32 eV)in NRR.Further,to explore the impact of different sp/sp^(2)-hybridized carbon ratios on the catalytic activity of SACs,the mechanism of nitrogen(N_(2))adsorption,activation,and the comprehensive pathway of NRR on Ti@GY1,Ti@GY2,and Ti@GY3 was systematically investigated.It was found that the ratio of sp/sp^(2)-hybridized carbon can significantly modulate the d-band center of the metal,thus affecting the energy barrier of the rate-determining step in NRR,decreasing from Ti@GY1(0.59 eV)to Ti@GY2(0.49 eV);and further to Ti@GY3(0.32 eV).Additionally,the Hall conductance was found to increase with the bias voltage in the range of 0.4-1 V,as calculated by Nanodcal software,demonstrating an improvement in the conductivity of the SAC.In summary,this work provides theoretical guidance for modulating the electrocatalytic nitrogen reduction activity of SACs by varying the ratio of sp/sp^(2)hybrid carbon,with Ti@GY3 showing potential as an excellent NRR catalyst.