期刊文献+
共找到1,004篇文章
< 1 2 51 >
每页显示 20 50 100
Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow Shop Problems
1
作者 Qianyao Zhu Kaizhou Gao +2 位作者 Wuze Huang Zhenfang Ma Adam Slowik 《Computers, Materials & Continua》 SCIE EI 2024年第9期3573-3589,共17页
The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow S... The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness. 展开更多
关键词 Distributed scheduling hybrid flow shop META-HEURISTICS local search Q-LEARNING
下载PDF
An Elite-Class Teaching-Learning-Based Optimization for Reentrant Hybrid Flow Shop Scheduling with Bottleneck Stage
2
作者 Deming Lei Surui Duan +1 位作者 Mingbo Li Jing Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期47-63,共17页
Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid ... Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP. 展开更多
关键词 hybrid flow shop scheduling REENTRANT bottleneck stage teaching-learning-based optimization
下载PDF
Joint decision-making of virtual module formation and scheduling considering queuing time
3
作者 Liang Mei Liu Yue Shilun Ge 《Data Science and Management》 2023年第3期134-143,共10页
Formation and scheduling are the most important decisions in the virtual modular manufacturing system;however,the global performance optimization of the system may be sacrificed via the superposition of two independen... Formation and scheduling are the most important decisions in the virtual modular manufacturing system;however,the global performance optimization of the system may be sacrificed via the superposition of two independent decision-making results.The joint decision of formation and scheduling is very important for system design.Complex and discrete manufacturing enterprises such as shipbuilding and aerospace often comprise multiple tasks,processes,and parallel machines,resulting in complex routes.The queuing time of parts in front of machines may account for 90%of the production cycle time.This study established a weighted allocation model of a formation-scheduling joint decision problem considering queuing time in system.To solve this nondeterministic polynomial(NP)problem,an adaptive differential evolution-simulated annealing(ADE-SA)algorithm is proposed.Compared with the standard differential evolution(DE)algorithm,the adaptive mutation factor overcomes the disadvantage that the scale of DE’s differential vector is difficult to control.The selection strategy of the SA algorithm compensates for the deficiency that DE’s greedy strategy may fall into a local optimal solution.The comparison results of four algorithms of a series of random examples demonstrate that the overall performance of ADE-SA is superior to the genetic algorithm,and average iteration,maximum completion time,and move time are 24%,11%,and 7%lower than the average of other three algorithms,respectively.The method can generate the joint decision-making scheme with better overall performance,and effectively identify production bottlenecks through quantitative analysis of queuing time. 展开更多
关键词 Joint decision-making Queue time Virtual module hybrid algorithm
下载PDF
Behavioral Decision-Making of Key Stakeholders in Public-Private Partnerships:A Hybrid Method and Benefit Distribution Study
4
作者 Guoshuai Sun Wanyi Zhang +2 位作者 Jiuying Dong Shuping Wan Jiao Feng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2895-2934,共40页
Public-private partnerships(PPPs)have been used by governments around the world to procure and construct infrastructural amenities.It relies on private sector expertise and funding to achieve this lofty objective.Howe... Public-private partnerships(PPPs)have been used by governments around the world to procure and construct infrastructural amenities.It relies on private sector expertise and funding to achieve this lofty objective.However,given the uncertainties of project management,transparency,accountability,and expropriation,this phenomenon has gained tremendous attention in recent years due to the important role it plays in curbing infrastructural deficits globally.Interestingly,the reasonable benefit distribution scheme in a PPP project is related to the behavior decisionmaking of the government and social capital,aswell as the performance of the project.In this paper,the government and social capital which are the key stakeholders of PPP projects were selected as the research objects.Based on the fuzzy expected value model and game theory,a hybrid method was adopted in this research taking into account the different risk preferences of both public entities and private parties under the fuzzy demand environment.To alleviate the problem of insufficient utilization of social capital in a PPP project,this paper seeks to grasp the relationship that exists between the benefit distribution of stakeholders,their behavioral decision-making,and project performance,given that they impact the performance of both public entities and private parties,as well as assist in maximizing the overall utility of the project.Furthermore,four game models were constructed in this study,while the expected value and opportunity-constrained programming model for optimal decision-making were derived using alternate perspectives of both centralized decision-making and decentralized decision-making.Afterward,the optimal behavioral decision-making of public entities and private parties in four scenarios was discussed and thereafter compared,which led to an ensuing discussion on the benefit distribution system under centralized decision-making.Lastly,based on an example case,the influence of different confidence levels,price,and fuzzy uncertainties of PPP projects on the equilibrium strategy results of both parties were discussed,giving credence to the effectiveness of the hybrid method.The results indicate that adjusting different confidence levels yields different equilibriumpoints,and therefore signposts that social capital has a fair perception of opportunities,as well as identifies reciprocal preferences.Nevertheless,we find that an increase in the cost coefficient of the government and social capital does not inhibit the effort of both parties.Our results also indicate that a reasonable benefit distribution of PPP projects can assist them in realizing optimum Pareto improvements over time.The results provide us with very useful strategies and recommendations to improve the overall performance of PPP projects in China. 展开更多
关键词 PPP fuzzy expected value game theory behavioral decision-making benefit distribution hybrid method
下载PDF
Optimization of Multi-Execution Modes and Multi-Resource-Constrained Offshore Equipment Project Scheduling Based on a Hybrid Genetic Algorithm
5
作者 Qi Zhou Jinghua Li +2 位作者 Ruipu Dong Qinghua Zhou Boxin Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1263-1281,共19页
Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as r... Offshore engineering construction projects are large and complex,having the characteristics of multiple execution modes andmultiple resource constraints.Their complex internal scheduling processes can be regarded as resourceconstrained project scheduling problems(RCPSPs).To solve RCPSP problems in offshore engineering construction more rapidly,a hybrid genetic algorithmwas established.To solve the defects of genetic algorithms,which easily fall into the local optimal solution,a local search operation was added to a genetic algorithm to defend the offspring after crossover/mutation.Then,an elitist strategy and adaptive operators were adopted to protect the generated optimal solutions,reduce the computation time and avoid premature convergence.A calibrated function method was used to cater to the roulette rules,and appropriate rules for encoding,decoding and crossover/mutation were designed.Finally,a simple network was designed and validated using the case study of a real offshore project.The performance of the genetic algorithmand a simulated annealing algorithmwas compared to validate the feasibility and effectiveness of the approach. 展开更多
关键词 Offshore project multi-execution modes resource-constrained project scheduling hybrid genetic algorithm
下载PDF
Many-Objective Optimization-Based Task Scheduling in Hybrid Cloud Environments
6
作者 Mengkai Zhao Zhixia Zhang +2 位作者 Tian Fan Wanwan Guo Zhihua Cui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2425-2450,共26页
Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud services.And a reasonable resource allocation solution is the key to adequately u... Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud services.And a reasonable resource allocation solution is the key to adequately utilize the hybrid cloud.However,most previous studies have not comprehensively optimized the performance of hybrid cloud task scheduling,even ignoring the conflicts between its security privacy features and other requirements.Based on the above problems,a many-objective hybrid cloud task scheduling optimization model(HCTSO)is constructed combining risk rate,resource utilization,total cost,and task completion time.Meanwhile,an opposition-based learning knee point-driven many-objective evolutionary algorithm(OBL-KnEA)is proposed to improve the performance of model solving.The algorithm uses opposition-based learning to generate initial populations for faster convergence.Furthermore,a perturbation-based multipoint crossover operator and a dynamic range mutation operator are designed to extend the search range.By comparing the experiments with other excellent algorithms on HCTSO,OBL-KnEA achieves excellent results in terms of evaluation metrics,initial populations,and model optimization effects. 展开更多
关键词 hybrid cloud environment task scheduling many-objective optimization model many-objective optimization algorithm
下载PDF
Optimization Models for Hybrid Work Scheduling
7
作者 Vardges Melkonian 《American Journal of Operations Research》 2023年第6期147-176,共30页
Remote and Hybrid work has been a common practice for many organizations in recent years. It has many advantages such as offering a better work-life balance but it might also negatively affect productivity and teamwor... Remote and Hybrid work has been a common practice for many organizations in recent years. It has many advantages such as offering a better work-life balance but it might also negatively affect productivity and teamwork. While an organization would like to satisfy the remote/hybrid preferences of its employees, it also must ensure that there are enough people working in the office to satisfy certain professional needs. Finding the right balance between in-office and remote work is not an easy task. We develop three optimization models to give solutions to the problem. The most comprehensive model allows employees to work remotely some days of the week and flexible hours for those weekdays when employees work in the office. Our computational results show that the models are very time-efficient in practice. The computational results also include a sensitivity analysis of the most comprehensive model. 展开更多
关键词 Integer Linear Programming Work scheduling Remote Work hybrid Work
下载PDF
Differential evolution algorithm for hybrid flow-shop scheduling problems 被引量:9
8
作者 Ye Xu Ling Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第5期794-798,共5页
Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a... Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems. 展开更多
关键词 hybrid flow-shop (HFS) scheduling differential evolution (DE) local search.
下载PDF
Short-term power generation scheduling rules for cascade hydropower stations based on hybrid algorithm 被引量:2
9
作者 Wei XIE Chang-ming JI +1 位作者 Zi-jun YANG Xiao-xing ZHANG 《Water Science and Engineering》 EI CAS 2012年第1期46-58,共13页
Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity... Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity of optimal scheduling processes were obtained by calculating the daily runoff process within three typical years, and a large number of simulated daily runoff processes were obtained using the progressive optimality algorithm (POA) in combination with the genetic algorithm (GA). After analyzing the optimal scheduling processes, the corresponding scheduling rules were determined, and the practical formulas were obtained. These rules can make full use of the rolling runoff forecast and carry out the rolling scheduling. Compared with the optimized results, the maximum relative difference of the annual power generation obtained by the scheduling rules is no more than 1%. The effectiveness and practical applicability of the scheduling rules are demonstrated by a case study. This study provides a new perspective for formulating the rules of power generation dispatching. 展开更多
关键词 scheduling rule short-time power generation dispatching hybrid algorithm cascade hydropower station
下载PDF
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:9
10
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
下载PDF
Integrated Production and Transportation Scheduling Method in Hybrid Flow Shop 被引量:1
11
作者 Wangming Li Dong Han +2 位作者 Liang Gao Xinyu Li Yang Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期112-131,共20页
The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies ha... The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies have considered them simultaneously. This paper solves the integrated production and transportation scheduling problem(IPTSP) in hybrid flow shops, which is an extension of the hybrid flow shop scheduling problem(HFSP). In addition to the production scheduling on machines, the transportation scheduling process on automated guided vehicles(AGVs)is considered as another optimization process. In this problem, the transfer tasks of jobs are performed by a certain number of AGVs. To solve it, we make some preparation(including the establishment of task pool, the new solution representation and the new solution evaluation), which can ensure that satisfactory solutions can be found efficiently while appropriately reducing the scale of search space. Then, an effective genetic tabu search algorithm is used to minimize the makespan. Finally, two groups of instances are designed and three types of experiments are conducted to evaluate the performance of the proposed method. The results show that the proposed method is effective to solve the integrated production and transportation scheduling problem. 展开更多
关键词 hybrid flow shop Integrated scheduling Task pool hybrid algorithm
下载PDF
Shift scheduling strategy development for parallel hybrid construction vehicles 被引量:1
12
作者 LI Tian-yu LIU Hui-ying +1 位作者 ZHANG Zhi-wen DING Dao-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期587-603,共17页
The shift scheduling system of the transmission has an important effect on the dynamic and economic performance of hybrid vehicles. In this work, shift scheduling strategies are developed for parallel hybrid construct... The shift scheduling system of the transmission has an important effect on the dynamic and economic performance of hybrid vehicles. In this work, shift scheduling strategies are developed for parallel hybrid construction vehicles. The effect of power distribution and direction on shift characteristics of the parallel hybrid vehicle with operating loads is evaluated, which must be considered for optimal shift control. A power distribution factor is defined to accurately describe the power distribution and direction in various parallel hybrid systems. This paper proposes a Levenberg-Marquardt algorithm optimized neural network shift scheduling strategy. The methodology contains two objective functions, it is a dynamic combination of a dynamic shift schedule for optimal vehicle acceleration, and an energy-efficient shift schedule for optimal powertrain efficiency. The study is performed on a test bench under typical operating conditions of a wheel loader. The experimental results show that the proposed strategies offer effective and competitive shift performance. 展开更多
关键词 construction vehicle hybrid electric vehicle shift scheduling strategy shift control neural network
下载PDF
Research on Hybrid Scheduling Algorithm Based on CAN bus 被引量:3
13
作者 HAN Shunyuan ZHANG Zhihong HE Hong 《Instrumentation》 2017年第2期22-27,共6页
In view of the problem that the packet information preempted netw ork resources in the process of transmission in the CAN bus,w hich leads to the low utilization of netw ork resources and the low accuracy of informati... In view of the problem that the packet information preempted netw ork resources in the process of transmission in the CAN bus,w hich leads to the low utilization of netw ork resources and the low accuracy of information transmission. Thus,a hybrid scheduling algorithm NM TS based on CAN bus is proposed,in the NM TS hybrid scheduling algorithm,the dynamic scheduling algorithm EDF is used to schedule hard real-time messages to solve the problem of low utilization of netw ork resources; the static scheduling algorithm RM S is used to schedule soft real-time messages and non real-time messages,so as to solve the problem of low accuracy of information transmission. By using M ATLAB softw are,the CAN netw ork model can be built,the EDF algorithm,RM S algorithm and NM TS algorithm are simulated. The experimental results show that the netw ork resources utilization is 90%,the packet loss rate is 0% of the NM TS algorithm. Therefore,The hybrid scheduling algorithm based on CAN bus NM TS has the characteristics of high netw ork resource utilization and high accuracy of information transmission,w hich w ill be very helpful for further research of CAN bus. 展开更多
关键词 RMS EDF NMTS hybrid scheduling
下载PDF
Greedy Constructive Procedure-Based Hybrid Differential Algorithm for Flexible Flow shop Group Scheduling
14
作者 郑永前 于萌萌 谢松杭 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期577-582,共6页
Aiming at the flexible flowshop group scheduling problem,taking sequence dependent setup time and machine skipping into account, a mathematical model for minimizing makespan is established,and a hybrid differential ev... Aiming at the flexible flowshop group scheduling problem,taking sequence dependent setup time and machine skipping into account, a mathematical model for minimizing makespan is established,and a hybrid differential evolution( HDE) algorithm based on greedy constructive procedure( GCP) is proposed,which combines differential evolution( DE) with tabu search( TS). DE is applied to generating the elite individuals of population,while TS is used for finding the optimal value by making perturbation in selected elite individuals. A lower bounding technique is developed to evaluate the quality of proposed algorithm. Experimental results verify the effectiveness and feasibility of proposed algorithm. 展开更多
关键词 FLEXIBLE flowshop group scheduling hybrid DIFFERENTIAL evolution(HDE) ALGORITHM GREEDY CONSTRUCTIVE procedure(GCP) lower bound
下载PDF
Schedulability analysis for linear transactions under fixed priority hybrid scheduling
15
作者 Zhi-gang GAO Zhao-hui WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第6期776-785,共10页
In hard real-time systems, schedulability analysis is not only one of the important means of guaranteeing the timelines of embedded software but also one of the fundamental theories of applying other new techniques, s... In hard real-time systems, schedulability analysis is not only one of the important means of guaranteeing the timelines of embedded software but also one of the fundamental theories of applying other new techniques, such as energy savings and fault tolerance. However, most of the existing schedulability analysis methods assume that schedulers use preemptive scheduling or non-preemptive scheduling. In this paper, we present a schedulability analysis method, i.e., the worst-case hybrid scheduling (WCHS) algorithm, which considers the influence of release jitters of transactions and extends schedulability analysis theory to timing analysis of linear transactions under fixed priority hybrid scheduling. To the best of our knowledge, this method is the first one on timing analysis of linear transactions under hybrid scheduling. An example is employed to demonstrate the use of this method. Experiments show that this method has lower computational complexity while keeping correctness, and that hybrid scheduling has little influence on the average worst-case response time (WCRT), but a negative impact on the schedulability of systems. 展开更多
关键词 Real-time systems hybrid scheduling Linear transactions Worst-case response time (WCRT) schedulability analysis
下载PDF
Optimal sensor scheduling for hybrid estimation
16
作者 LIU Jian-liang SUN Yao +2 位作者 YANG Jian LIU Wei-yi CHEN Wei-min 《Journal of Central South University》 SCIE EI CAS 2013年第8期2186-2194,共9页
A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set ... A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set of sensors. Then, a hybrid estimation algorithm was designed to compute the estimates of the continuous and discrete states of the SLHS based on the observations from the selected sensors. As the sensor scheduling algorithm is designed such that the Bayesian decision risk is minimized, the true discrete state can be better identified. Moreover, the continuous state estimation performance of the proposed algorithm is better than that of hybrid estimation algorithms using only predetermined sensors. Finallyo the algorithms are validated through an illustrative target tracking example. 展开更多
关键词 sensor scheduling hybrid systems Bayesian decision risk target tracking
下载PDF
Local Search Algorithm with Hybrid Neighborhood and Its Application to Job Shop Scheduling Problem
17
作者 黄文奇 曾立平 《Journal of Southwest Jiaotong University(English Edition)》 2004年第2期95-100,共6页
A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while sea... A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while search procedure get trapped at local optima and carry the search to areas of the feasible set with better prospect. New strategies used for breaking out of entrapments are presented and they are helpful for the procedure to improve local optima. A performance comparison of the proposed method with some best-performing algorithms on all 10-job, 10-machine benchmark problems and the other two problems generated by Fisher and Thompson (ie., FT6 and FT20)is made. The experiment results show the better optimal performance of the proposed algorithm. 展开更多
关键词 Job shop scheduling Local search hybrid neighborhood Off-trap strategy
下载PDF
Day-ahead scheduling based on reinforcement learning with hybrid action space
18
作者 CAO Jingyu DONG Lu SUN Changyin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期693-705,共13页
Driven by the improvement of the smart grid,the active distribution network(ADN)has attracted much attention due to its characteristic of active management.By making full use of electricity price signals for optimal s... Driven by the improvement of the smart grid,the active distribution network(ADN)has attracted much attention due to its characteristic of active management.By making full use of electricity price signals for optimal scheduling,the total cost of the ADN can be reduced.However,the optimal dayahead scheduling problem is challenging since the future electricity price is unknown.Moreover,in ADN,some schedulable variables are continuous while some schedulable variables are discrete,which increases the difficulty of determining the optimal scheduling scheme.In this paper,the day-ahead scheduling problem of the ADN is formulated as a Markov decision process(MDP)with continuous-discrete hybrid action space.Then,an algorithm based on multi-agent hybrid reinforcement learning(HRL)is proposed to obtain the optimal scheduling scheme.The proposed algorithm adopts the structure of centralized training and decentralized execution,and different methods are applied to determine the selection policy of continuous scheduling variables and discrete scheduling variables.The simulation experiment results demonstrate the effectiveness of the algorithm. 展开更多
关键词 day-ahead scheduling active distribution network(ADN) reinforcement learning hybrid action space
下载PDF
A hybrid differential evolution algorithm for meta-task scheduling in grids
19
作者 康钦马 Jiang Changiun +1 位作者 He Hong Huang Qiangsheng 《High Technology Letters》 EI CAS 2009年第3期261-266,共6页
Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or n... Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or near-optimal schedule within reasonable time.The encoding scheme and the adaptation ofclassical differential evolution algorithm for dealing with discrete variables are discussed.A simple but ef-fective local search is incorporated into differential evolution to stress exploitation.The performance of theproposed HDE algorithm is showed by being compared with a genetic algorithm(GA)on a known staticbenchmark for the problem.Experimental results indicate that the proposed algorithm has better perfor-mance than GA in terms of both solution quality and computational time,and thus it can be used to de-sign efficient dynamic schedulers in batch mode for real grid systems. 展开更多
关键词 hybrid differential evolution grid computing task scheduling genetic algorithm
下载PDF
Cost Effective Optimal Task Scheduling Model in Hybrid Cloud Environment
20
作者 M.Manikandan R.Subramanian +1 位作者 M.S.Kavitha S.Karthik 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期935-948,共14页
In today’s world, Cloud Computing (CC) enables the users to accesscomputing resources and services over cloud without any need to own the infrastructure. Cloud Computing is a concept in which a network of devices, l... In today’s world, Cloud Computing (CC) enables the users to accesscomputing resources and services over cloud without any need to own the infrastructure. Cloud Computing is a concept in which a network of devices, located inremote locations, is integrated to perform operations like data collection, processing, data profiling and data storage. In this context, resource allocation and taskscheduling are important processes which must be managed based on the requirements of a user. In order to allocate the resources effectively, hybrid cloud isemployed since it is a capable solution to process large-scale consumer applications in a pay-by-use manner. Hence, the model is to be designed as a profit-driven framework to reduce cost and make span. With this motivation, the currentresearch work develops a Cost-Effective Optimal Task Scheduling Model(CEOTS). A novel algorithm called Target-based Cost Derivation (TCD) modelis used in the proposed work for hybrid clouds. Moreover, the algorithm workson the basis of multi-intentional task completion process with optimal resourceallocation. The model was successfully simulated to validate its effectivenessbased on factors such as processing time, make span and efficient utilization ofvirtual machines. The results infer that the proposed model outperformed theexisting works and can be relied in future for real-time applications. 展开更多
关键词 Cost effectiveness hybrid cloud optimal task scheduling virtual machine resource allocation make span
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部