In this study,a mathematical model was established to predict the formation of the soluble microbial product(SMP)in a submerged membrane bioreactor.The developed model was calibrated under the reference condition.Simu...In this study,a mathematical model was established to predict the formation of the soluble microbial product(SMP)in a submerged membrane bioreactor.The developed model was calibrated under the reference condition.Simulation results were in good agreement with the measured results under the reference condition.The calibrated model was then used in the scenario studies to evaluate the effect of three chosen operating parameters:hydraulic retention time(HRT),dissolved oxygen concentration,and sludge retention time(SRT).Simulation results revealed that the SMP dominated the soluble organic substances in the supernatant.The scenario studies also revealed that the HRT can be decreased to 1 h without deteriorating the effluent quality;dissolved oxygen concentration in the reactor can be kept at 2–3 mg/L to maintain the effluent quality,reduce the content of SMP,and minimize operating costs;the optimal SRT can be controlled to 10–15 d to achieve complete nitrification process,less membrane fouling potential,and acceptable organic removal efficiency.展开更多
In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogeni...In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time(HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD(chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis(AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3% ± 2.5%, 86.2% ± 3.8% and 93.5% ± 1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS(61.1% ± 4.7%,75.4% ± 5.0% and 82.1% ± 2.1%, respectively). Moreover, larger TCV/TV(total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2% ± 3.7% and 28.30 ± 1.48 mA,respectively. They were significantly increased to 62.1% ± 2.0% and 34.55 ± 0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater.展开更多
基金This work was supported by the International Bureau of the German Federal Ministry of Education and Research(IPSWAT scholarship).
文摘In this study,a mathematical model was established to predict the formation of the soluble microbial product(SMP)in a submerged membrane bioreactor.The developed model was calibrated under the reference condition.Simulation results were in good agreement with the measured results under the reference condition.The calibrated model was then used in the scenario studies to evaluate the effect of three chosen operating parameters:hydraulic retention time(HRT),dissolved oxygen concentration,and sludge retention time(SRT).Simulation results revealed that the SMP dominated the soluble organic substances in the supernatant.The scenario studies also revealed that the HRT can be decreased to 1 h without deteriorating the effluent quality;dissolved oxygen concentration in the reactor can be kept at 2–3 mg/L to maintain the effluent quality,reduce the content of SMP,and minimize operating costs;the optimal SRT can be controlled to 10–15 d to achieve complete nitrification process,less membrane fouling potential,and acceptable organic removal efficiency.
基金financially supported by the Ministry of Environmental Protection of the People's Republic of China (Major Science and Technology Program for Water Pollution Control and Treatment) (No. 2014ZX07204-005)the National Natural Science Foundation of China (Nos. 51222812, 31370157, 21407164, 51508551)+2 种基金the China Postdoctoral Science Foundation (No. 2015M580140)the National Science Foundation for Distinguished Young Scholars (No. 51225802)Hundred Talents Program of the Chinese Academy of Sciences (No. 29BR2013001)
文摘In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time(HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD(chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis(AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3% ± 2.5%, 86.2% ± 3.8% and 93.5% ± 1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS(61.1% ± 4.7%,75.4% ± 5.0% and 82.1% ± 2.1%, respectively). Moreover, larger TCV/TV(total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2% ± 3.7% and 28.30 ± 1.48 mA,respectively. They were significantly increased to 62.1% ± 2.0% and 34.55 ± 0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater.