Subject Code:F04 With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Wang Kaiyou(王开友)from the Institute of Semiconductors,Chinese Academy of Sciences demon...Subject Code:F04 With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Wang Kaiyou(王开友)from the Institute of Semiconductors,Chinese Academy of Sciences demonstrates all-electric and programmable manipulations of ferromagnetic bits without external展开更多
In the realm of molecular phase transition research,particularly for applications in sensors,data storage and switching technologies,the role of organic-inorganic hybrid perovskite materials has been increasingly reco...In the realm of molecular phase transition research,particularly for applications in sensors,data storage and switching technologies,the role of organic-inorganic hybrid perovskite materials has been increasingly recognized for their significant potential.Nevertheless,hybrid post-perovskites,as a critical subclass of perovskites,have not been thoroughly studied and mainly limit in the instances based on polyatomic bridging agents like dicyanamide(dca^(-))and non-cyclic organic cations.Herein,a polar cyclic quaternary ammonium cation,N,N-dimethylpyrrolidinium(DMP^(+)),was used to assemble a new hybrid post-perovskite,(DMP)[Mn(dca)_(3)](1),which undergoes a phase transition from orthorhombic Bmmb to monoclinic P2_(1)/n space group at 249 K.By employing multiple techniques such as differential scanning calorimetry,variable-temperature single-crystal X-ray analysis,dielectric measurements,and Hirshfeld surface analysis,we disclosed the role of polar cyclic quaternary ammonium DMP^(+)in elevating the phase-transition temperature by 48 K,generating significant dielectric switching effect and facilitating interlayer sliding of inorganic framework.展开更多
In today's Internet routing infrastructure,designers have addressed scal-ing concerns in routing constrained multiobjective optimization problems examining latency and mobility concerns as a secondary constrain.In...In today's Internet routing infrastructure,designers have addressed scal-ing concerns in routing constrained multiobjective optimization problems examining latency and mobility concerns as a secondary constrain.In tactical Mobile Ad-hoc Network(MANET),hubs can function based on the work plan in various social affairs and the internally connected hubs are almost having the related moving standards where the topology between one and the other are tightly coupled in steady support by considering the touchstone of hubs such as a self-sorted out,self-mending and self-administration.Clustering in the routing process is one of the key aspects to increase MANET performance by coordinat-ing the pathways using multiple criteria and analytics.We present a Group Adaptive Hybrid Routing Algorithm(GAHRA)for gathering portability,which pursues table-driven directing methodology in stable accumulations and on-request steering strategy for versatile situations.Based on this aspect,the research demonstrates an adjustable framework for commuting between the table-driven approach and the on-request approach,with the objectives of enhancing the out-put of MANET routing computation in each hub.Simulation analysis and replication results reveal that the proposed method is promising than a single well-known existing routing approach and is well-suited for sensitive MANET applications.展开更多
文摘Subject Code:F04 With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Wang Kaiyou(王开友)from the Institute of Semiconductors,Chinese Academy of Sciences demonstrates all-electric and programmable manipulations of ferromagnetic bits without external
基金supported by the National Natural Science Foundation of China(22071273 and 21821003)Fundamental Research Funds for the Central Universities,Sun Yat Sen University(23lgzy001).
文摘In the realm of molecular phase transition research,particularly for applications in sensors,data storage and switching technologies,the role of organic-inorganic hybrid perovskite materials has been increasingly recognized for their significant potential.Nevertheless,hybrid post-perovskites,as a critical subclass of perovskites,have not been thoroughly studied and mainly limit in the instances based on polyatomic bridging agents like dicyanamide(dca^(-))and non-cyclic organic cations.Herein,a polar cyclic quaternary ammonium cation,N,N-dimethylpyrrolidinium(DMP^(+)),was used to assemble a new hybrid post-perovskite,(DMP)[Mn(dca)_(3)](1),which undergoes a phase transition from orthorhombic Bmmb to monoclinic P2_(1)/n space group at 249 K.By employing multiple techniques such as differential scanning calorimetry,variable-temperature single-crystal X-ray analysis,dielectric measurements,and Hirshfeld surface analysis,we disclosed the role of polar cyclic quaternary ammonium DMP^(+)in elevating the phase-transition temperature by 48 K,generating significant dielectric switching effect and facilitating interlayer sliding of inorganic framework.
文摘In today's Internet routing infrastructure,designers have addressed scal-ing concerns in routing constrained multiobjective optimization problems examining latency and mobility concerns as a secondary constrain.In tactical Mobile Ad-hoc Network(MANET),hubs can function based on the work plan in various social affairs and the internally connected hubs are almost having the related moving standards where the topology between one and the other are tightly coupled in steady support by considering the touchstone of hubs such as a self-sorted out,self-mending and self-administration.Clustering in the routing process is one of the key aspects to increase MANET performance by coordinat-ing the pathways using multiple criteria and analytics.We present a Group Adaptive Hybrid Routing Algorithm(GAHRA)for gathering portability,which pursues table-driven directing methodology in stable accumulations and on-request steering strategy for versatile situations.Based on this aspect,the research demonstrates an adjustable framework for commuting between the table-driven approach and the on-request approach,with the objectives of enhancing the out-put of MANET routing computation in each hub.Simulation analysis and replication results reveal that the proposed method is promising than a single well-known existing routing approach and is well-suited for sensitive MANET applications.