Call Admission Control (CAC) is one of the key traffic management mechanisms that must be deployed in order to meet the strict requirements for dependability imposed on the services provided by modern wireless network...Call Admission Control (CAC) is one of the key traffic management mechanisms that must be deployed in order to meet the strict requirements for dependability imposed on the services provided by modern wireless networks. In this paper, we develop an executable top-down hierarchical Colored Petri Net (CPN) model for multi-traffic CAC in Orthogonal Frequency Division Multiple Access (OFDMA) system. By theoretic analysis and CPN simulation, it is demonstrated that the CPN model is isomorphic to Markov Chain (MC) assuming that each data stream follows Poisson distribution and the corresponding arrival time interval is an exponential random variable, and it breaks through MC's explicit limitation, which includes MC's memoryless property and proneness to state space explosion in evaluating CAC process. Moreover, we present four CAC schemes based on CPN model taking into account call-level and packet-level Quality of Service (QoS). The simulation results show that CPN offers significant advantages over MC in modeling CAC strategies and evaluating their performance with less computational complexity in addition to its flexibility and adaptability to different scenarios.展开更多
In a hybrid system, the subsystems with discrete dynamics play a central role in a hybrid system. In the course of engineering machinery of cluster construction, the discrete control law is hard to obtain because the ...In a hybrid system, the subsystems with discrete dynamics play a central role in a hybrid system. In the course of engineering machinery of cluster construction, the discrete control law is hard to obtain because the construction environment is complex and there exist many affecting factors. In this paper, hierarchically intelligent control, expert control and fuzzy control are introduced into the discrete subsystems of engineering machinery of cluster hybrid system, so as to rebuild the hybrid system and make the discrete control law easily and effectively obtained. The structures, reasoning mechanism and arithmetic of intelligent control are replanted to discrete dynamic, conti- nuous process and the interface of the hybrid system. The structures of three types of intelligent hybrid system are presented and the human experiences summarized from engineering machinery of cluster are taken into account.展开更多
A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is...A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is proposed for hybrid systems, and the average queue length over all queues is used as an objective function to find an optimal switching scheme for traffic light. It is illustrated that traffic light control for single intersection is a typical hybrid system, and the optimal planning-time scheme can be obtained using the optimal hybrid systems control based on the two stages method.展开更多
In this article, state feedback predictive controller for hybrid system via parametric programming is proposed. First, mixed logic dynamic (MLD) modeling mechanism for hybrid system is analyzed, which has a distingu...In this article, state feedback predictive controller for hybrid system via parametric programming is proposed. First, mixed logic dynamic (MLD) modeling mechanism for hybrid system is analyzed, which has a distinguished advantage to deal with the logic rules and constraints of a plant. Model predictive control algorithm with moving horizon state estimator (MHE) is presented. The estimator is adopted to estimate the current state of the plant with process disturbance and measurement noise, and the state estimated are utilized in the predictive controller for both regulation and tracking problems of the hybrid system based on MLD model. Off-line parametric programming is adopted and then on-line mixed integer programming problem can be treated as the parameter programming with estimated state as the parameters. A three tank system is used for computer simulation, results show that the proposed MHE based predictive control via parametric programming is effective for hybrid system with model/olant mismatch, and has a potential for the engineering applications.展开更多
In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-u...In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.展开更多
The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy...The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.展开更多
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
A quite great progress of the supervisory control theory for discrete event systems (DES)has been made in the past nearly twenty years, and now, automata, formal language and Petri nets become the main research tools....A quite great progress of the supervisory control theory for discrete event systems (DES)has been made in the past nearly twenty years, and now, automata, formal language and Petri nets become the main research tools. This paper focus on the Petri nets based supervisory control theory of DES. Firstly, we review the research results in this field, and claim that there generally exists a problem in Petri nets based supervisory control theory of DES, that is, the deadlock caused by the controller introduced to enforce the given specification occurs in the closed-loop systems, especially the deadlock occurs in the closed-loop system in which the original plant is live. Finally, a possible research direction is presented for the solution of this problem.展开更多
In this paper, a linear programming method is proposed to solve model predictive control for a class of hybrid systems. Firstly, using the (max, +) algebra, a typical subclass of hybrid systems called max-plus-line...In this paper, a linear programming method is proposed to solve model predictive control for a class of hybrid systems. Firstly, using the (max, +) algebra, a typical subclass of hybrid systems called max-plus-linear (MPL) systems is obtained. And then, model predictive control (MPC) framework is extended to MPL systems. In general, the nonlinear optimization approach or extended linear complementarity problem (ELCP) were applied to solve the MPL-MPC optimization problem. A new optimization method based on canonical forms for max-min-plus-scaling (MMPS) functions (using the operations maximization, minimization, addition and scalar multiplication) with linear constraints on the inputs is presented. The proposed approach consists in solving several linear programming problems and is more efficient than nonlinear optimization. The validity of the algorithm is illustrated by an example.展开更多
Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on ...Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on time and sequence. This increases the difficulties of description and analysis. In this paper, timed places control Petri nets (TPCPN) is applied for the modeling of FECS. On this basis the simulation of two important processes, namely uploading fuel elements into the core for the first time and emptying the core is finished by simulation software Arena. The results show that as TPCPN is able to describe different kinds of logic relationship and has time properties and control properties, it’s very suitable for the modeling and analysis of FECS.展开更多
Limitations of various accumulators in hybrid hydraulic excavator are analyzed. A program using capacitor as the accumulator based on constant work-point control is put forward. A simulating experimental system of hyb...Limitations of various accumulators in hybrid hydraulic excavator are analyzed. A program using capacitor as the accumulator based on constant work-point control is put forward. A simulating experimental system of hybrid construction machinery is established, and experimental study on constant work-point control for parallel hybrid system with capacitor accumulator is carried out using the pressure and flow rate derived from boom cylinder of hydraulic excavator in actual work as the simulating loads. A program of double work-point control is proposed and proved by further experiments.展开更多
A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two s...A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two subgroups with communications between them,agents in the two subgroups achieve consensus and containment,respectively.For MASs with both time-delays and additive noises,two group control protocols are proposed to solve this problem for the containment-oriented case and consensus-oriented case,respectively.By developing a new analysis idea,some sufficient conditions and necessary conditions related to the communication intensity betw een the two subgroups are obtained for the following two types of group hybrid coordination behavior:1)Agents in one subgroup and in another subgroup achieve weak consensus and containment,respectively;2)Agents in one subgroup and in another subgroup achieve strong consensus and containment,respectively.It is revealed that the decay of the communication impact betw een the two subgroups is necessary for the consensus-oriented case.Finally,the validity of the group control results is verified by several simulation examples.展开更多
This work developed the modeling and supervisory control for gas turbine. A CTPN (continuous timed Petri Net) model of a gas turbine, using a first linear order approximation for every state of the Brayton cycle is ...This work developed the modeling and supervisory control for gas turbine. A CTPN (continuous timed Petri Net) model of a gas turbine, using a first linear order approximation for every state of the Brayton cycle is obtained. The Brayton cycle rules the functioning of a gas turbine, and it is composed by four states: compression, combustion, expansion and cooling. The principle of the gas turbine is developed by the Brayton cycle, a thermodynamic process which intervenes in the gas turbine components. The steady-state behavior of the gas turbine has been widely investigated in engineering area. Moreover, the dynamic behavior has been studied using non-linear models of its components, leading to complicated mathematical representations. The methodology of the current work begins with a simplification of the dynamical relations in every state (excepting the cooling phase) of the Brayton cycle. Temperature and pressure are modeled as first order linear systems, therefore, every system is translated into a CTPN. Furthermore, to guarantee a safety operation, an SC (supervisory controller) is designed to ensure the combustion chamber temperature is lower than 1,000 ℃. Although the model presented is extremely simplified, it will be used as a starting point to develop more complex models.展开更多
In this paper we describe a hybrid system approach for high consumption industrial furnace control. The problem is observed in systematic way starting from the need for modeling this system as hybrid. For description ...In this paper we describe a hybrid system approach for high consumption industrial furnace control. The problem is observed in systematic way starting from the need for modeling this system as hybrid. For description of this behavior we use the Hybrid System Description Language. After that, we design an optimal controller for the furnace and we simulate and compare the controller with other relevant predictive controllers. We have shown that using the hybrid approach for control of industrial furnaces leads to significant improvement of the control system performances.展开更多
In order to model effectively hybrid systems,a new modeling method of extended Petri nets,which is called extended object-orient hybrid Petri net (EOHPN),is proposed.To deal with the complexity of hybrid systems, ob...In order to model effectively hybrid systems,a new modeling method of extended Petri nets,which is called extended object-orient hybrid Petri net (EOHPN),is proposed.To deal with the complexity of hybrid systems, object-oriented abstraction mechanisms such as encapsulation and classifications are merged into EOHPN models.To combine the continuous part and discrete part of hybrid systems and to reduce the complexity of hybrid systems,a hybrid Petri net is introduced and extended with object-oriented modeling technology.Development of object models is suggested on the basis of the defined EOHPN.Finally, an application-oriented case is presented to illustrate that how the proposed EOHPN is used to model hybrid systems.The resulting model validates that the EOHPNs can deal with the modeling complexity of hybrid systems.展开更多
A hierarchical closed-loop production control scheme integrating scheduling,control and performance evaluation is discussed.Firstly,the production process is divided into two main hierarchies:the lower level is the ph...A hierarchical closed-loop production control scheme integrating scheduling,control and performance evaluation is discussed.Firstly,the production process is divided into two main hierarchies:the lower level is the physical operation level and the upper one is the management level.Secondly,the schedule template for the management level and the activity template for the physical operation level are constructed separately,the tasks in the schedule have the ability to make partial decisions,and the per- formance parameters are introduced into activity template.Thirdly,the two levels use different model representations:stochastic process algebra for the management level whose output is the control commands and stochastic Petri net for the physical operation lev- el which is the execution of the control commands.Then,the integration of the two levels is the control commands mapping into the lower physical operations and the responses feeding back to the upper decision-making that are defined by some transition functions. Under the proposed scheme,the production process control of a flexible assembly is exemplified.It is concluded that the process con- trol model has partial ability to make decision on-line for uncertain and dynamic environments and facilitates reasoning about the be- haviors of the process control,and performance evaluation can be done online for real-time scheduling to ensure the global optimiza- tion.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
Software systems are increasingly executed in dynamic infrastructures. These infrastructures are dynamic as they are themselves subject to change as they support various applications that may or may not share some of ...Software systems are increasingly executed in dynamic infrastructures. These infrastructures are dynamic as they are themselves subject to change as they support various applications that may or may not share some of the resources. Dynamic software systems become more and more important, but are difficult to handle. Modeling and simulating dynamic systems requires the representation of their processes and the system changes within one model. To that effect, reconfigurable Petri nets consist of a Petri net and a set of rules that can modify the Petri net. Their main feature is the capability to model complex coordination behavior in dynamically adapting infrastructures. The interplay of both levels of dynamic behavior requires a very precise description, so the specification when and which rules are to be applied plays a crucial role for the convenient use of reconfigurable nets. We differentiate several types of reconfigurable Petri nets and present a survey of control structure for these types, reconfigurable Petri nets. These control structures either concern the infrastructure, i.e., the rules and transformations or the system part, i.e., the firing behavior, or both. They are introduced by a short characterization and illustrated by examples. We state the results for various Petri net types and the tools supporting the different control structures.展开更多
It has been a hot research topic to synthesize maximally permissive controllers with fewest monitors. So far, all maximally permissive control models for a well-known benchmark are generalized Petri net, which com-pli...It has been a hot research topic to synthesize maximally permissive controllers with fewest monitors. So far, all maximally permissive control models for a well-known benchmark are generalized Petri net, which com-plicates the system. In addition, they all relied on time-consuming reachability analysis. Uzam and Zhou ap-ply First-met-bad-marking (FBM) method to the benchmark to achieve a near maximal permissive control policy with the advantage of no weighted control (WC) arcs. To improve the state of the art, it is interesting to synthesize optimal controller with as few weighted arcs as possible since it is unclear how to optimize the control for siphon involving WC arcs, This paper explores the condition to achieve optimal controller with-out WC and defining a new type of siphon, called α-siphon. If the condition is not met, one can apply the technique by Piroddi et al. to synthesize optimal controllers with WC.展开更多
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr...As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.展开更多
基金Supported by the National Natural Science Foundation of China (No. 61271421)the Education Department of Henan Province (No. 2011GGJS-002 and No. 12A510023)
文摘Call Admission Control (CAC) is one of the key traffic management mechanisms that must be deployed in order to meet the strict requirements for dependability imposed on the services provided by modern wireless networks. In this paper, we develop an executable top-down hierarchical Colored Petri Net (CPN) model for multi-traffic CAC in Orthogonal Frequency Division Multiple Access (OFDMA) system. By theoretic analysis and CPN simulation, it is demonstrated that the CPN model is isomorphic to Markov Chain (MC) assuming that each data stream follows Poisson distribution and the corresponding arrival time interval is an exponential random variable, and it breaks through MC's explicit limitation, which includes MC's memoryless property and proneness to state space explosion in evaluating CAC process. Moreover, we present four CAC schemes based on CPN model taking into account call-level and packet-level Quality of Service (QoS). The simulation results show that CPN offers significant advantages over MC in modeling CAC strategies and evaluating their performance with less computational complexity in addition to its flexibility and adaptability to different scenarios.
文摘In a hybrid system, the subsystems with discrete dynamics play a central role in a hybrid system. In the course of engineering machinery of cluster construction, the discrete control law is hard to obtain because the construction environment is complex and there exist many affecting factors. In this paper, hierarchically intelligent control, expert control and fuzzy control are introduced into the discrete subsystems of engineering machinery of cluster hybrid system, so as to rebuild the hybrid system and make the discrete control law easily and effectively obtained. The structures, reasoning mechanism and arithmetic of intelligent control are replanted to discrete dynamic, conti- nuous process and the interface of the hybrid system. The structures of three types of intelligent hybrid system are presented and the human experiences summarized from engineering machinery of cluster are taken into account.
文摘A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is proposed for hybrid systems, and the average queue length over all queues is used as an objective function to find an optimal switching scheme for traffic light. It is illustrated that traffic light control for single intersection is a typical hybrid system, and the optimal planning-time scheme can be obtained using the optimal hybrid systems control based on the two stages method.
文摘In this article, state feedback predictive controller for hybrid system via parametric programming is proposed. First, mixed logic dynamic (MLD) modeling mechanism for hybrid system is analyzed, which has a distinguished advantage to deal with the logic rules and constraints of a plant. Model predictive control algorithm with moving horizon state estimator (MHE) is presented. The estimator is adopted to estimate the current state of the plant with process disturbance and measurement noise, and the state estimated are utilized in the predictive controller for both regulation and tracking problems of the hybrid system based on MLD model. Off-line parametric programming is adopted and then on-line mixed integer programming problem can be treated as the parameter programming with estimated state as the parameters. A three tank system is used for computer simulation, results show that the proposed MHE based predictive control via parametric programming is effective for hybrid system with model/olant mismatch, and has a potential for the engineering applications.
文摘In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.
基金Supported by Hebei Provincial Natural Science Foundation of China(Grant Nos.E2020203174,E2020203078)S&T Program of Hebei Province of China(Grant No.226Z2202G)Science Research Project of Hebei Provincial Education Department of China(Grant No.ZD2022029).
文摘The all-wheel drive(AWD)hybrid system is a research focus on high-performance new energy vehicles that can meet the demands of dynamic performance and passing ability.Simultaneous optimization of the power and economy of hybrid vehicles becomes an issue.A unique multi-mode coupling(MMC)AWD hybrid system is presented to realize the distributed and centralized driving of the front and rear axles to achieve vectored distribution and full utilization of the system power between the axles of vehicles.Based on the parameters of the benchmarking model of a hybrid vehicle,the best model-predictive control-based energy management strategy is proposed.First,the drive system model was built after the analysis of the MMC-AWD’s drive modes.Next,three fundamental strategies were established to address power distribution adjustment and battery SOC maintenance when the SOC changed,which was followed by the design of a road driving force observer.Then,the energy consumption rate in the average time domain was processed before designing the minimum fuel consumption controller based on the equivalent fuel consumption coefficient.Finally,the advantage of the MMC-AWD was confirmed by comparison with the dynamic performance and economy of the BYD Song PLUS DMI-AWD.The findings indicate that,in comparison to the comparative hybrid system at road adhesion coefficients of 0.8 and 0.6,the MMC-AWD’s capacity to accelerate increases by 5.26%and 7.92%,respectively.When the road adhesion coefficient is 0.8,0.6,and 0.4,the maximum climbing ability increases by 14.22%,12.88%,and 4.55%,respectively.As a result,the dynamic performance is greatly enhanced,and the fuel savings rate per 100 km of mileage reaches 12.06%,which is also very economical.The proposed control strategies for the new hybrid AWD vehicle can optimize the power and economy simultaneously.
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
基金Supported in part by the National Outstanding Youth Science Foundation of P.R.China (60025308) Doctor Degree Program Foundation of P.R.China (20020335103), Scientific Research Program of Department of Education of Zhejiang Province, P.R.China (20040149)
文摘A quite great progress of the supervisory control theory for discrete event systems (DES)has been made in the past nearly twenty years, and now, automata, formal language and Petri nets become the main research tools. This paper focus on the Petri nets based supervisory control theory of DES. Firstly, we review the research results in this field, and claim that there generally exists a problem in Petri nets based supervisory control theory of DES, that is, the deadlock caused by the controller introduced to enforce the given specification occurs in the closed-loop systems, especially the deadlock occurs in the closed-loop system in which the original plant is live. Finally, a possible research direction is presented for the solution of this problem.
基金This work was supported by the National Science Foundation of China (No. 60474051)the program for New Century Excellent Talents in University of China (NCET).
文摘In this paper, a linear programming method is proposed to solve model predictive control for a class of hybrid systems. Firstly, using the (max, +) algebra, a typical subclass of hybrid systems called max-plus-linear (MPL) systems is obtained. And then, model predictive control (MPC) framework is extended to MPL systems. In general, the nonlinear optimization approach or extended linear complementarity problem (ELCP) were applied to solve the MPL-MPC optimization problem. A new optimization method based on canonical forms for max-min-plus-scaling (MMPS) functions (using the operations maximization, minimization, addition and scalar multiplication) with linear constraints on the inputs is presented. The proposed approach consists in solving several linear programming problems and is more efficient than nonlinear optimization. The validity of the algorithm is illustrated by an example.
文摘Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on time and sequence. This increases the difficulties of description and analysis. In this paper, timed places control Petri nets (TPCPN) is applied for the modeling of FECS. On this basis the simulation of two important processes, namely uploading fuel elements into the core for the first time and emptying the core is finished by simulation software Arena. The results show that as TPCPN is able to describe different kinds of logic relationship and has time properties and control properties, it’s very suitable for the modeling and analysis of FECS.
文摘Limitations of various accumulators in hybrid hydraulic excavator are analyzed. A program using capacitor as the accumulator based on constant work-point control is put forward. A simulating experimental system of hybrid construction machinery is established, and experimental study on constant work-point control for parallel hybrid system with capacitor accumulator is carried out using the pressure and flow rate derived from boom cylinder of hydraulic excavator in actual work as the simulating loads. A program of double work-point control is proposed and proved by further experiments.
基金supported by the National Natural Science Foundation of China(62073305)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUG170610)。
文摘A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two subgroups with communications between them,agents in the two subgroups achieve consensus and containment,respectively.For MASs with both time-delays and additive noises,two group control protocols are proposed to solve this problem for the containment-oriented case and consensus-oriented case,respectively.By developing a new analysis idea,some sufficient conditions and necessary conditions related to the communication intensity betw een the two subgroups are obtained for the following two types of group hybrid coordination behavior:1)Agents in one subgroup and in another subgroup achieve weak consensus and containment,respectively;2)Agents in one subgroup and in another subgroup achieve strong consensus and containment,respectively.It is revealed that the decay of the communication impact betw een the two subgroups is necessary for the consensus-oriented case.Finally,the validity of the group control results is verified by several simulation examples.
文摘This work developed the modeling and supervisory control for gas turbine. A CTPN (continuous timed Petri Net) model of a gas turbine, using a first linear order approximation for every state of the Brayton cycle is obtained. The Brayton cycle rules the functioning of a gas turbine, and it is composed by four states: compression, combustion, expansion and cooling. The principle of the gas turbine is developed by the Brayton cycle, a thermodynamic process which intervenes in the gas turbine components. The steady-state behavior of the gas turbine has been widely investigated in engineering area. Moreover, the dynamic behavior has been studied using non-linear models of its components, leading to complicated mathematical representations. The methodology of the current work begins with a simplification of the dynamical relations in every state (excepting the cooling phase) of the Brayton cycle. Temperature and pressure are modeled as first order linear systems, therefore, every system is translated into a CTPN. Furthermore, to guarantee a safety operation, an SC (supervisory controller) is designed to ensure the combustion chamber temperature is lower than 1,000 ℃. Although the model presented is extremely simplified, it will be used as a starting point to develop more complex models.
文摘In this paper we describe a hybrid system approach for high consumption industrial furnace control. The problem is observed in systematic way starting from the need for modeling this system as hybrid. For description of this behavior we use the Hybrid System Description Language. After that, we design an optimal controller for the furnace and we simulate and compare the controller with other relevant predictive controllers. We have shown that using the hybrid approach for control of industrial furnaces leads to significant improvement of the control system performances.
基金The National Key Laboratory Program ( No.51458060104JW0316)the National High Technology Research and De-velopment Program of China (863 Program) (No.2003AA414120).
文摘In order to model effectively hybrid systems,a new modeling method of extended Petri nets,which is called extended object-orient hybrid Petri net (EOHPN),is proposed.To deal with the complexity of hybrid systems, object-oriented abstraction mechanisms such as encapsulation and classifications are merged into EOHPN models.To combine the continuous part and discrete part of hybrid systems and to reduce the complexity of hybrid systems,a hybrid Petri net is introduced and extended with object-oriented modeling technology.Development of object models is suggested on the basis of the defined EOHPN.Finally, an application-oriented case is presented to illustrate that how the proposed EOHPN is used to model hybrid systems.The resulting model validates that the EOHPNs can deal with the modeling complexity of hybrid systems.
文摘A hierarchical closed-loop production control scheme integrating scheduling,control and performance evaluation is discussed.Firstly,the production process is divided into two main hierarchies:the lower level is the physical operation level and the upper one is the management level.Secondly,the schedule template for the management level and the activity template for the physical operation level are constructed separately,the tasks in the schedule have the ability to make partial decisions,and the per- formance parameters are introduced into activity template.Thirdly,the two levels use different model representations:stochastic process algebra for the management level whose output is the control commands and stochastic Petri net for the physical operation lev- el which is the execution of the control commands.Then,the integration of the two levels is the control commands mapping into the lower physical operations and the responses feeding back to the upper decision-making that are defined by some transition functions. Under the proposed scheme,the production process control of a flexible assembly is exemplified.It is concluded that the process con- trol model has partial ability to make decision on-line for uncertain and dynamic environments and facilitates reasoning about the be- haviors of the process control,and performance evaluation can be done online for real-time scheduling to ensure the global optimiza- tion.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
文摘Software systems are increasingly executed in dynamic infrastructures. These infrastructures are dynamic as they are themselves subject to change as they support various applications that may or may not share some of the resources. Dynamic software systems become more and more important, but are difficult to handle. Modeling and simulating dynamic systems requires the representation of their processes and the system changes within one model. To that effect, reconfigurable Petri nets consist of a Petri net and a set of rules that can modify the Petri net. Their main feature is the capability to model complex coordination behavior in dynamically adapting infrastructures. The interplay of both levels of dynamic behavior requires a very precise description, so the specification when and which rules are to be applied plays a crucial role for the convenient use of reconfigurable nets. We differentiate several types of reconfigurable Petri nets and present a survey of control structure for these types, reconfigurable Petri nets. These control structures either concern the infrastructure, i.e., the rules and transformations or the system part, i.e., the firing behavior, or both. They are introduced by a short characterization and illustrated by examples. We state the results for various Petri net types and the tools supporting the different control structures.
文摘It has been a hot research topic to synthesize maximally permissive controllers with fewest monitors. So far, all maximally permissive control models for a well-known benchmark are generalized Petri net, which com-plicates the system. In addition, they all relied on time-consuming reachability analysis. Uzam and Zhou ap-ply First-met-bad-marking (FBM) method to the benchmark to achieve a near maximal permissive control policy with the advantage of no weighted control (WC) arcs. To improve the state of the art, it is interesting to synthesize optimal controller with as few weighted arcs as possible since it is unclear how to optimize the control for siphon involving WC arcs, This paper explores the condition to achieve optimal controller with-out WC and defining a new type of siphon, called α-siphon. If the condition is not met, one can apply the technique by Piroddi et al. to synthesize optimal controllers with WC.
文摘As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.