LF6 aluminum alloy plates with 4.5 mm thickness are welded in this experiment. Welding is carried out by using the CO2 laser-MIG paraxial hybrid welding in fiat position. The experimental results indicate that the inh...LF6 aluminum alloy plates with 4.5 mm thickness are welded in this experiment. Welding is carried out by using the CO2 laser-MIG paraxial hybrid welding in fiat position. The experimental results indicate that the inherent droplet transfer cycle time of conventional MIG arc is changed due to the interaction between CO2 laser beam and MIG arc in the short-circuiting mode of laser-MIG hybrid welding. Because of the preheating action of CO2 laser to electrode and base material, the droplet transfer frequency of MIG arc is increased in the hybrid welding process. When laser power is increased to a certain degree, the droplet transfer frequency is decreased due to the effect of laser-induced keyhole. Furthermore, through analyzing the MIG welding current and arc voltage waveforms and the characteristics of droplet transfer in the hybrid welding process, the effect of laser energy and the action point between laser beam and arc on the frequency of droplet transfer and weld appearance is investigated in details.展开更多
GaN nanorods are fabricated using inductively coupled plasma etching with Ni nano-island masks. The poly [2- methoxy-5-(2-ethyl)hexoxy-l,4-phenylenevinylene] (MEH-PPV)/GaN-nanorod hybrid structure is fabricated by...GaN nanorods are fabricated using inductively coupled plasma etching with Ni nano-island masks. The poly [2- methoxy-5-(2-ethyl)hexoxy-l,4-phenylenevinylene] (MEH-PPV)/GaN-nanorod hybrid structure is fabricated by depositing the MEH-PPV film on the GaN nanorods by using the spin-coating process. In the hybrid structure, the spatial separation is minimized to achieve high-emciency non-radiative resonant energy transfer. Optical properties of a novel device consisting of MEH-PPV/GaN-nanorod hybrid structure is studied by analyzing photoluminescenee (PL) spectra. Compared with the pure GaN nanorods, the PL intensity of the band edge emission of GaN in the MEH-PPV/GaN-nanorods is enhanced as much as three times, and the intensity of the yellow band is suppressed slightly. The obtained results are analyzed by energy transfer between the GaN nanorods and the MEH-PPV. An energy transfer model is proposed to explain the phenomenon.展开更多
We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid–optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred...We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid–optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred to the microwave photon, then the optical photon successively, which afterwards is transmitted to the remote node by cavity leaking,and finally the quantum state is transferred to the remote superconducting qubit. The high efficiency of the state transfer is achieved by controllable Gaussian pulses sequence and numerically demonstrated with theoretically feasible parameters.Our scheme has the potential to implement unified quantum computing–communication–computing, and high fidelity of the microwave–optics–microwave transfer process of the quantum state.展开更多
We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the ma...We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the magneto-optical trap (MOT). A long distance magnetic transfer setup moves the cold atom over 46cm from the MOT chamber to the UHV science chamber, which provides great optical access and long conservative trap lifetime. After evaporative cooling in the hybrid trap, we produce nearly pure condensates of 1 ~ 107 atoms with lifetime of 80 s in the optical dipole trap.展开更多
We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy cent...We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while eapacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the sealability and controllability. Our methods open an alter- native perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing.展开更多
The effect of laser power on metal transfer is studied under conditions of alternating combustion of double arcs in order to develop the welding process of the laser-double arcs pulsed metal active gas (P-MAG) hybri...The effect of laser power on metal transfer is studied under conditions of alternating combustion of double arcs in order to develop the welding process of the laser-double arcs pulsed metal active gas (P-MAG) hybrid welding with single power. Different laser power corresponds to different interactive mechanisms of laser and arc and to different methods of metal transfer in the hybrid welding. When the laser power ascends from 500 W to 1 500 W, the methods of metal transfer change from the complex transfer of one droplet per pulse, one droplet two pulses and one droplet much more pulses during the mixture of globular and projected transfer of the lead wire, and from one droplet two pulses and one droplet three pulses during globular transfer of the follow wire to the methods of the metal transfer of both lead wire and follow wire are stable one droplet two pulses and one droplet three pulses when the metal transfer is mainly globular. The arc sharps and pressure of droplet are altered with the laser power changing. The compression of the arcs is strengthened by the laser and the offset of the center of droplet mass is much more obvious with the increasing of the laser power.展开更多
We propose a scheme to realize coherent quantum information transfer between topological and conventional charge qubits. We first consider a hybrid system where a quantum dot(QD) is tunnel-coupled to a semiconductor...We propose a scheme to realize coherent quantum information transfer between topological and conventional charge qubits. We first consider a hybrid system where a quantum dot(QD) is tunnel-coupled to a semiconductor Majorana-hosted nanowire(MNW) via using gated control as a switch, the information encoded in the superposition state of electron empty and occupied state can be transferred to each other through choosing the proper interaction time to make measurements.Then we consider another system including a double QDs and a pair of parallel MNWs, it is shown that the entanglement information transfer can be realized between the two kinds of systems. We also realize long distance quantum information transfer between two quantum dots separated by an MNW, by making use of the nonlocal fermionic level formed with the pared Majorana feimions(MFs) emerging at the two ends of the MNW. Furthermore, we analyze the teleportationlike electron transfer phenomenon predicted by Tewari et al. [Phys. Rev. Lett. 100, 027001(2008)] in our considered system.Interestingly, we find that this phenomenon exactly corresponds to the case that the information encoded in one QD just returns back to its original place during the dynamical evolution of the combined system from the perspective of quantum state transfer.展开更多
Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom tran...Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom transfer radical polymerization (ATRP) of styrene, in the presence of citric acid (CA) as non-surfactant template or pore-forming agent and followed by ethanol extraction to remove template molecules. The materials were characterized by infrared spectroscopy OR), N-2 adsorption-desorption measurements, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The results indicate that the materials prepared with 50 wt%-60 wt% template contents have average pore sizes of 2-3 nm and large surface areas (ca. 886 m(2)/g) as well as high pore volumes (ca. 0.53 cm(3)/g). The mesoporosity arises from interconnected channels and pores with disordered arrangements. The pore diameters and pore volumes increase as the template content is increased. The pore diameters show a little change upon heating at 200degreesC overnight. However, the materials do not have good hydrothermal stability.展开更多
In this work, we report a theoretical exploration of the responses of organic azobenzene dendrimers. The polarizabilities, the first and second hyperpolarizabilities of the azobenzene monomers (GO), and the first, s...In this work, we report a theoretical exploration of the responses of organic azobenzene dendrimers. The polarizabilities, the first and second hyperpolarizabilities of the azobenzene monomers (GO), and the first, second and third generation (G1, G2 and G3, respectively) are investigated by semi-empirical methods. The calculated results show that the nonlinear optical (NLO) properties of these organic dendrimers are mainly determined by the azobenzene chromospheres. Additionally, the values oft and y increase almost in proportion to the number of chromophores. On the other hand, two types of transition metal hybrid azobenzene dendrimers (core-hybrid and branch-end hybrid according to the sites combined with transition metals) are simulated and discussed in detail in the framework of time-dependent density functional theory (TDDFT). The calculated results reveal that the NLO responses of these metal dendrimers distinctly varied as a result of altering the charge transfer transition scale and the excitation energies.展开更多
A simple equation for heat spreading angle is derived which is useful for cases with a single layer thermal spreader. The derivation starts with Fourier’s heat transfer law. Heat spreading in two dimensions is then i...A simple equation for heat spreading angle is derived which is useful for cases with a single layer thermal spreader. The derivation starts with Fourier’s heat transfer law. Heat spreading in two dimensions is then introduced which results in a quadratic equation relative to spreading angle. The result is a closed form equation for heat spreading angle. Calculations using the equation are compared to 3D finite element simulations which show agreement acceptable for most practical applications and over a wide range of physical dimensions and thermal conductivities. A norma-lized dimensional parameter is defined which is used to generate a curve fit equation of the spreading angle. A three step procedure is then presented which allows the calculation of the spreading angle and temperature rise in the thermal spreader. The result has application for initial calculations of temperature rise in microwave hybrid modules and electronic packages such as heat sinks for high power amplifiers. This is because it is common for these types of modules and packages to use a single layer heat spreader in copper-tungsten (CuW) or copper-molybde-num (CuMo) connected to a cold plate. An important benefit of this method is that it allows microwave hybrid designers and high power amplifier packaging engineers a method to quickly perform trade studies to determine the maximum mounting temperature for integrated circuits.展开更多
Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have ...Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have been studies on nanofluids, including metal, ceramic and magnetic nanoparticles mixed with base fluids such as Water, Kerosene, and Ethylene glycol. However, research on fluids employing semiconductor nanoparticles as supplements to base fluids to generate nanofluids and hybrid nanofluids is limited. For the investigation, Gallium nitrite, a binary semiconductor with excellent heat convection, is together with Cu metal nanoparticles and Al<sub>2</sub>O<sub>3</sub> ceramic nanoparticles separately in the base fluid Ethylene glycol (EG) to form hybrid nanofluids. The effects of convective boundary conditions, thermal radiation, heat source/sink, suction/injection, and activation energy on three-dimensional Williamson MHD hybrid nanofluid flow of Cu + GaN + EG, Al<sub>2</sub>O<sub>3</sub> + GaN + EG, and Cu + Al<sub>2</sub>O<sub>3</sub> + EG are investigated on a stretched sheet with porosity. A similarity transformation is performed on the governing equations to transform them into dimensionless ordinary differential equations ODEs. Numerical analysis is carried out in MATLAB utilizing bvp5c and the shooting technique. The variations of velocity, temperature, and concentration profiles as a function of different physical effects are presented graphically with dimensionless parameters and explained the variations scientifically. As varied with different parameters, the values of the Skin-friction coefficient, Nusselt number, and Sherwood number are mentioned in the table.展开更多
Atom transfer radical polymerization (ATRP) using cuprous chloride/2,2'-bipyridine (bipy) was applied to graft polymerization of styrene on the surface of silica nanoparticles to synthesize polymer-inorganic hybri...Atom transfer radical polymerization (ATRP) using cuprous chloride/2,2'-bipyridine (bipy) was applied to graft polymerization of styrene on the surface of silica nanoparticles to synthesize polymer-inorganic hybrid nanoparticles, 2-(4Chloromethylphenyl) ethyltriethoxysilane (CTES) was immobilized on the surface of silica nanoparticles through condensation reaction of the silanol groups on silica with triethoxysilane group of CTES. Then ATRP of St was initiated by this surface-modified silica nanoparticles bearing benzyl chloride groups, and formed PSt graft chains on the surface of silica nanoparticles. The thickness of the graft chains increased with reaction time. End group analysis confirmed the occurrence of ATRP. Thermal analysis indicated that thermal stabilization of these resulting hybrid nanoparticles also increases with polymerization conversion. The results above show that this 'grafting from' reaction could be used for the preparation of polymer-inorganic hybrid nanoparticles with controlled structure of the polymer's end groups.展开更多
Silica spheres doped with Eu (TTFA)3 and/or Sm(TTFA)3 were synthesized by using the modified Stober method. The transmission electron microscope image reveals that the hybrid spheres have smooth surfaces and an av...Silica spheres doped with Eu (TTFA)3 and/or Sm(TTFA)3 were synthesized by using the modified Stober method. The transmission electron microscope image reveals that the hybrid spheres have smooth surfaces and an average diameter of about 210 nm. Fluorescence spectrometer was used to analyze the fluorescence properties of hybrid spheres. The results show that multiple energy transfer processes are simultaneously achieved in the same samples co-doped with Eu (TTFA)3 and Sm(TTFA)3, namely between the ligand and Eu^3+ ion, the ligand and Sm^3+ ion, and Sm^3+ ion and Eu^3+ ion. Energy transfer of Sm^3+→Eu^3+ in the hybrid spheres leads to fluorescence enhancement of Eu^3+ emission by approximately an order of magnitude. The lifetimes of the hybrid spheres were also measured.展开更多
有机发光二极管(Organic light-emitting diodes,OLEDs)作为照明和显示领域极其具有竞争力的技术,近年来备受关注。实现超简单、高效率、低滚降的白光OLEDs,对有机发光层材料的选择至关重要。杂化局部和电荷转移(Hybridized local and c...有机发光二极管(Organic light-emitting diodes,OLEDs)作为照明和显示领域极其具有竞争力的技术,近年来备受关注。实现超简单、高效率、低滚降的白光OLEDs,对有机发光层材料的选择至关重要。杂化局部和电荷转移(Hybridized local and charge transfer,HLCT)材料的“热激子”通道可以将高能三线态激子窜跃至单线态,实现理论上100%的激子利用率,快速的反向系间窜跃可有效抑制三线态激子猝灭,从而降低器件效率滚降。基于此,本文首先通过电荷平衡策略优化器件结构,制备了基于HLCT材料pCzAnN的高效蓝光OLED。在此基础上,以pCzAnN作为传统荧光材料的敏化主体,通过不完全能量传递策略,实现了双色及三色白光OLEDs制备。制备的白光OLEDs最高显色指数达到90,最大外量子效率达到8.76%,且展现出较低效率滚降及良好的光谱稳定性。本研究对开发简单、高效率、低滚降白光OLEDs具有指导意义。展开更多
文摘LF6 aluminum alloy plates with 4.5 mm thickness are welded in this experiment. Welding is carried out by using the CO2 laser-MIG paraxial hybrid welding in fiat position. The experimental results indicate that the inherent droplet transfer cycle time of conventional MIG arc is changed due to the interaction between CO2 laser beam and MIG arc in the short-circuiting mode of laser-MIG hybrid welding. Because of the preheating action of CO2 laser to electrode and base material, the droplet transfer frequency of MIG arc is increased in the hybrid welding process. When laser power is increased to a certain degree, the droplet transfer frequency is decreased due to the effect of laser-induced keyhole. Furthermore, through analyzing the MIG welding current and arc voltage waveforms and the characteristics of droplet transfer in the hybrid welding process, the effect of laser energy and the action point between laser beam and arc on the frequency of droplet transfer and weld appearance is investigated in details.
基金Supported by the National Key Technology Research and Development Program under Grant No 2016YFB0400100the National Basic Research Program of China under Grant No 2012CB619304+4 种基金the High-Technology Research and Development Program of China under Grant Nos 2014AA032605 and 2015AA033305the National Natural Science Foundation of China under Grant Nos61274003,61422401,51461135002 and 61334009the Key Technology Research of Jiangsu Province under Grant No BE2015111the Solid State Lighting and Energy-Saving Electronics Collaborative Innovation Centerthe Research Funds from NJU-Yangzhou Institute of Opto-electronics
文摘GaN nanorods are fabricated using inductively coupled plasma etching with Ni nano-island masks. The poly [2- methoxy-5-(2-ethyl)hexoxy-l,4-phenylenevinylene] (MEH-PPV)/GaN-nanorod hybrid structure is fabricated by depositing the MEH-PPV film on the GaN nanorods by using the spin-coating process. In the hybrid structure, the spatial separation is minimized to achieve high-emciency non-radiative resonant energy transfer. Optical properties of a novel device consisting of MEH-PPV/GaN-nanorod hybrid structure is studied by analyzing photoluminescenee (PL) spectra. Compared with the pure GaN nanorods, the PL intensity of the band edge emission of GaN in the MEH-PPV/GaN-nanorods is enhanced as much as three times, and the intensity of the yellow band is suppressed slightly. The obtained results are analyzed by energy transfer between the GaN nanorods and the MEH-PPV. An energy transfer model is proposed to explain the phenomenon.
基金Project supported by the National Natural Science Foundation of China(Grant No.11305021)the Fundamental Research Funds for the Central Universities of China(Grants Nos.3132017072 and 3132015149)
文摘We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid–optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred to the microwave photon, then the optical photon successively, which afterwards is transmitted to the remote node by cavity leaking,and finally the quantum state is transferred to the remote superconducting qubit. The high efficiency of the state transfer is achieved by controllable Gaussian pulses sequence and numerically demonstrated with theoretically feasible parameters.Our scheme has the potential to implement unified quantum computing–communication–computing, and high fidelity of the microwave–optics–microwave transfer process of the quantum state.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922002the National Natural Science Foundation of China under Grant No 11474347
文摘We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the magneto-optical trap (MOT). A long distance magnetic transfer setup moves the cold atom over 46cm from the MOT chamber to the UHV science chamber, which provides great optical access and long conservative trap lifetime. After evaporative cooling in the hybrid trap, we produce nearly pure condensates of 1 ~ 107 atoms with lifetime of 80 s in the optical dipole trap.
基金Supported by the National Natural Science Foundation of China under Grant No 11305021the Fundamental Research Funds for the Central Universities of China under Grants Nos 3132014229 and 3132014328
文摘We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while eapacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the sealability and controllability. Our methods open an alter- native perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing.
基金This paper is supported by National Natural Science Foundation of China (Grant No. 51175374) , the Application of Basic & Frontier Technology Program of Tianjin (Grant No. OgJCYBJC05000) and the Science & Technology Pillar Program of Tianjin (Grant No. 10ZCKFSF00200).
文摘The effect of laser power on metal transfer is studied under conditions of alternating combustion of double arcs in order to develop the welding process of the laser-double arcs pulsed metal active gas (P-MAG) hybrid welding with single power. Different laser power corresponds to different interactive mechanisms of laser and arc and to different methods of metal transfer in the hybrid welding. When the laser power ascends from 500 W to 1 500 W, the methods of metal transfer change from the complex transfer of one droplet per pulse, one droplet two pulses and one droplet much more pulses during the mixture of globular and projected transfer of the lead wire, and from one droplet two pulses and one droplet three pulses during globular transfer of the follow wire to the methods of the metal transfer of both lead wire and follow wire are stable one droplet two pulses and one droplet three pulses when the metal transfer is mainly globular. The arc sharps and pressure of droplet are altered with the laser power changing. The compression of the arcs is strengthened by the laser and the offset of the center of droplet mass is much more obvious with the increasing of the laser power.
基金Project supported by the National Natural Science Foundation of China(Grant No.11304031)
文摘We propose a scheme to realize coherent quantum information transfer between topological and conventional charge qubits. We first consider a hybrid system where a quantum dot(QD) is tunnel-coupled to a semiconductor Majorana-hosted nanowire(MNW) via using gated control as a switch, the information encoded in the superposition state of electron empty and occupied state can be transferred to each other through choosing the proper interaction time to make measurements.Then we consider another system including a double QDs and a pair of parallel MNWs, it is shown that the entanglement information transfer can be realized between the two kinds of systems. We also realize long distance quantum information transfer between two quantum dots separated by an MNW, by making use of the nonlocal fermionic level formed with the pared Majorana feimions(MFs) emerging at the two ends of the MNW. Furthermore, we analyze the teleportationlike electron transfer phenomenon predicted by Tewari et al. [Phys. Rev. Lett. 100, 027001(2008)] in our considered system.Interestingly, we find that this phenomenon exactly corresponds to the case that the information encoded in one QD just returns back to its original place during the dynamical evolution of the combined system from the perspective of quantum state transfer.
基金This project was supported by the National Natural Science Foundation of China to K. Y. Qiu (Grant No. 29874002) and Outstanding Young Scientist Award to Y. Wei (Grant No. 29825504).
文摘Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom transfer radical polymerization (ATRP) of styrene, in the presence of citric acid (CA) as non-surfactant template or pore-forming agent and followed by ethanol extraction to remove template molecules. The materials were characterized by infrared spectroscopy OR), N-2 adsorption-desorption measurements, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The results indicate that the materials prepared with 50 wt%-60 wt% template contents have average pore sizes of 2-3 nm and large surface areas (ca. 886 m(2)/g) as well as high pore volumes (ca. 0.53 cm(3)/g). The mesoporosity arises from interconnected channels and pores with disordered arrangements. The pore diameters and pore volumes increase as the template content is increased. The pore diameters show a little change upon heating at 200degreesC overnight. However, the materials do not have good hydrothermal stability.
基金This work was supported by the National Natural Science Foundation of China (No. 20573114 and 90203017)the MOST Projects of 2004CB720605 and 2006DFA43020
文摘In this work, we report a theoretical exploration of the responses of organic azobenzene dendrimers. The polarizabilities, the first and second hyperpolarizabilities of the azobenzene monomers (GO), and the first, second and third generation (G1, G2 and G3, respectively) are investigated by semi-empirical methods. The calculated results show that the nonlinear optical (NLO) properties of these organic dendrimers are mainly determined by the azobenzene chromospheres. Additionally, the values oft and y increase almost in proportion to the number of chromophores. On the other hand, two types of transition metal hybrid azobenzene dendrimers (core-hybrid and branch-end hybrid according to the sites combined with transition metals) are simulated and discussed in detail in the framework of time-dependent density functional theory (TDDFT). The calculated results reveal that the NLO responses of these metal dendrimers distinctly varied as a result of altering the charge transfer transition scale and the excitation energies.
文摘A simple equation for heat spreading angle is derived which is useful for cases with a single layer thermal spreader. The derivation starts with Fourier’s heat transfer law. Heat spreading in two dimensions is then introduced which results in a quadratic equation relative to spreading angle. The result is a closed form equation for heat spreading angle. Calculations using the equation are compared to 3D finite element simulations which show agreement acceptable for most practical applications and over a wide range of physical dimensions and thermal conductivities. A norma-lized dimensional parameter is defined which is used to generate a curve fit equation of the spreading angle. A three step procedure is then presented which allows the calculation of the spreading angle and temperature rise in the thermal spreader. The result has application for initial calculations of temperature rise in microwave hybrid modules and electronic packages such as heat sinks for high power amplifiers. This is because it is common for these types of modules and packages to use a single layer heat spreader in copper-tungsten (CuW) or copper-molybde-num (CuMo) connected to a cold plate. An important benefit of this method is that it allows microwave hybrid designers and high power amplifier packaging engineers a method to quickly perform trade studies to determine the maximum mounting temperature for integrated circuits.
文摘Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have been studies on nanofluids, including metal, ceramic and magnetic nanoparticles mixed with base fluids such as Water, Kerosene, and Ethylene glycol. However, research on fluids employing semiconductor nanoparticles as supplements to base fluids to generate nanofluids and hybrid nanofluids is limited. For the investigation, Gallium nitrite, a binary semiconductor with excellent heat convection, is together with Cu metal nanoparticles and Al<sub>2</sub>O<sub>3</sub> ceramic nanoparticles separately in the base fluid Ethylene glycol (EG) to form hybrid nanofluids. The effects of convective boundary conditions, thermal radiation, heat source/sink, suction/injection, and activation energy on three-dimensional Williamson MHD hybrid nanofluid flow of Cu + GaN + EG, Al<sub>2</sub>O<sub>3</sub> + GaN + EG, and Cu + Al<sub>2</sub>O<sub>3</sub> + EG are investigated on a stretched sheet with porosity. A similarity transformation is performed on the governing equations to transform them into dimensionless ordinary differential equations ODEs. Numerical analysis is carried out in MATLAB utilizing bvp5c and the shooting technique. The variations of velocity, temperature, and concentration profiles as a function of different physical effects are presented graphically with dimensionless parameters and explained the variations scientifically. As varied with different parameters, the values of the Skin-friction coefficient, Nusselt number, and Sherwood number are mentioned in the table.
基金This project was supported by the National Natural Science Foundation of China to K.Y Qiu (Grant No. 29874002) and Outstanding Young Scientist Award to Y. Wei (Grant No. 29825504)
文摘Atom transfer radical polymerization (ATRP) using cuprous chloride/2,2'-bipyridine (bipy) was applied to graft polymerization of styrene on the surface of silica nanoparticles to synthesize polymer-inorganic hybrid nanoparticles, 2-(4Chloromethylphenyl) ethyltriethoxysilane (CTES) was immobilized on the surface of silica nanoparticles through condensation reaction of the silanol groups on silica with triethoxysilane group of CTES. Then ATRP of St was initiated by this surface-modified silica nanoparticles bearing benzyl chloride groups, and formed PSt graft chains on the surface of silica nanoparticles. The thickness of the graft chains increased with reaction time. End group analysis confirmed the occurrence of ATRP. Thermal analysis indicated that thermal stabilization of these resulting hybrid nanoparticles also increases with polymerization conversion. The results above show that this 'grafting from' reaction could be used for the preparation of polymer-inorganic hybrid nanoparticles with controlled structure of the polymer's end groups.
文摘Silica spheres doped with Eu (TTFA)3 and/or Sm(TTFA)3 were synthesized by using the modified Stober method. The transmission electron microscope image reveals that the hybrid spheres have smooth surfaces and an average diameter of about 210 nm. Fluorescence spectrometer was used to analyze the fluorescence properties of hybrid spheres. The results show that multiple energy transfer processes are simultaneously achieved in the same samples co-doped with Eu (TTFA)3 and Sm(TTFA)3, namely between the ligand and Eu^3+ ion, the ligand and Sm^3+ ion, and Sm^3+ ion and Eu^3+ ion. Energy transfer of Sm^3+→Eu^3+ in the hybrid spheres leads to fluorescence enhancement of Eu^3+ emission by approximately an order of magnitude. The lifetimes of the hybrid spheres were also measured.
文摘有机发光二极管(Organic light-emitting diodes,OLEDs)作为照明和显示领域极其具有竞争力的技术,近年来备受关注。实现超简单、高效率、低滚降的白光OLEDs,对有机发光层材料的选择至关重要。杂化局部和电荷转移(Hybridized local and charge transfer,HLCT)材料的“热激子”通道可以将高能三线态激子窜跃至单线态,实现理论上100%的激子利用率,快速的反向系间窜跃可有效抑制三线态激子猝灭,从而降低器件效率滚降。基于此,本文首先通过电荷平衡策略优化器件结构,制备了基于HLCT材料pCzAnN的高效蓝光OLED。在此基础上,以pCzAnN作为传统荧光材料的敏化主体,通过不完全能量传递策略,实现了双色及三色白光OLEDs制备。制备的白光OLEDs最高显色指数达到90,最大外量子效率达到8.76%,且展现出较低效率滚降及良好的光谱稳定性。本研究对开发简单、高效率、低滚降白光OLEDs具有指导意义。