Electrochemical water splitting has been demonstrated as a promising technology for the renewable generation of green hydrogen from water.Despite the extensive progress in materials science,one particular challenge fo...Electrochemical water splitting has been demonstrated as a promising technology for the renewable generation of green hydrogen from water.Despite the extensive progress in materials science,one particular challenge for further development towards industrial application lies in the rational design and exploitation of efficient and cost-effective materials,especially oxygen evolution reaction(OER)electrocatalysts at the anode.In addition,attempts to replace the OER with other more oxidizable anode reactions are being evaluated as a groundbreaking strategy for generating hydrogen at lower potentials and reducing overall energy costs while producing valuable chemicals simultaneously.Compared with Fe/Co/Ni-based compounds,Cu-based materials have not received extensive research attention for electrode designs despite their high conductivity and abundant earth reserves.In this review,combining with the advantages of a three-dimensional network structure of metal foams,we summarize recent progress on Cu foam(CF)-derived materials as efficient electrocatalysts towards pure water electrolysis and hybrid water electrolysis.The advantages of CF and design strategies to enhance the electrocatalytic activity and operational durability are presented first.Catalyst design and fabrication strategies are then highlighted and the structure-activity relationship is also discussed.Finally,we propose challenges and perspectives on self-supported electrodes beyond CF-derived materials.展开更多
Renewable energy-driven hydrogen generation from water electrolysis has been widely recognized as a promising approach to utilize sustainable energy resources,reduce our dependence on legacy fossil fuels and alleviate...Renewable energy-driven hydrogen generation from water electrolysis has been widely recognized as a promising approach to utilize sustainable energy resources,reduce our dependence on legacy fossil fuels and alleviate net carbon dioxide emissions.However,conventional water electrolyzers suffer from the high overpotentials,mainly due to the sluggish kinetics of anodic oxygen evolution reaction(OER).This reaction also generates reactive oxygen species that could degrade the proton exchange membrane and oxygen that may mix with the cathodic hydrogen to form explosive gaseous mixtures.To address these issues,an innovative hybrid water electrolysis strategy which involves a certain alternative oxidation reaction to replace OER has been developed,and has led to a burgeoning area that sparks much research interest in finding available alternative reactions and their corresponding electrocatalysts.Herein,we summarize the alternative reactions into three groups:(1)the reagentsacrificing type that can generate H2 with an ultra-low potential while the substrates are oxidized to valueless products;(2)the pollutant-degrading type at which environmental pollutants are used as substrates;(3)the valueadded type that produces valuable products at the anode.Catalyst and electrolyzer designs for hybrid electrolysis are also briefly discussed,with an emphasis on the catalyst reconstruction phenomenon.Finally,the present challenges and perspectives are put forward.展开更多
Electricity-driven water splitting to convert water into hydrogen(H_(2)has been widely regarded as an efficient approach for H_(2)production.Nevertheless,the energy conversion efficiency of it is greatly limited due t...Electricity-driven water splitting to convert water into hydrogen(H_(2)has been widely regarded as an efficient approach for H_(2)production.Nevertheless,the energy conversion efficiency of it is greatly limited due to the disadvantage of the sluggish kinetic of oxidation evolution reaction(OER).To effectively address the issue,a novel concept of hybrid water electrolysis has been developed for energy–saving H_(2)production.This strategy aims to replace the sluggish kinetics of OER by utilizing thermodynamically favorable organics oxidation reaction to replace OER.Herein,recent advances in such water splitting system for boosting H_(2)evolution under low cell voltage are systematically summarized.Some notable progress of different organics oxidation reactions coupled with hydrogen evolution reaction(HER)are discussed in detail.To facilitate the development of hybrid water electrolysis,the major challenges and perspectives are also proposed.展开更多
AIM:To investigate the feasibility and safety of Natural orifice trans-umbilical endoscopic cholecystectomy with a water-jet hybrid-knife in a non-survival porcine model.METHODS:Pure natural orifice transluminal endos...AIM:To investigate the feasibility and safety of Natural orifice trans-umbilical endoscopic cholecystectomy with a water-jet hybrid-knife in a non-survival porcine model.METHODS:Pure natural orifice transluminal endoscopic surgery(NOTES) cholecystectomy was performed on three non-survival pigs,by transumbilical approach,using a water-jet hybrid-knife. Under general anesthesia,the following steps detailed the procedure:(1) incision of the umbilicus followed by the passage of a double-channel flexible endsocope through an overtube into the peritoneal cavity;(2) establishment of pneumoperitoneum;(3) abdominal exploration;(4)endoscopic cholecystectomy:dissection of the gallbladder performed using water jet equipment,ligation of the cystic artery and duct conducted using nylon loops;and(5) necropsy with macroscopic evaluation.RESULTS:Transumbilical endoscopic cholecystectomy was successfully completed in the first and third pig,with minor bleedings. The dissection times were 137and 42 min,respectively. The total operation times were 167 and 69 min,respectively. And the lengths of resected specimen were 6.5 and 6.1 cm,respectively.Instillation of the fluid into the gallbladder bed produced edematous,distended tissue making separation safe and easy. Reliable ligation using double nylon loops insured the safety of cutting between the loops.There were no intraoperative complications or hemodynamic instability. Uncontrolled introperative bleeding occurred in the second case,leading to the operation failure.CONCLUSION:Pure NOTES trans-umbilical cholecystectomy with a water-jet hybrid-knife appears to be feasible and safe. Further investigation of this technique with long-term follow-up in animals is needed to confirm the preliminary observation.展开更多
The main objectives of this research were to study the effect of water absorption on mechanical properties of hybrid fiber reinforcement for polypropylene composites. The poor resistance towards water absorption is on...The main objectives of this research were to study the effect of water absorption on mechanical properties of hybrid fiber reinforcement for polypropylene composites. The poor resistance towards water absorption is one of the draw- backs of natural fibers. Hybrid filler-polypropylene composites are subjected to water immersion tests in order to study the effects of water absorption on the mechanical properties. Composites specimens containing 30 phr and 40 phr fiber weight were prepared by melt blending process. Water absorption tests were conducted by immersion specimens in distilled water at room temperature for different time durations (24, 48, 72, 96, 120, 144, 168, 192 hours). The tensile, flexural and impact properties were investigated before and after water absorption. The percentage of moisture uptake increased as the increasing order of the filler loading due to the high cellulose content. The phase morphology of wood flour/wheat husk polypropylene hybrid composites were investigated by SEM, the dynamic mechanical properties of the composite are analyzed by DMA & wheat, wood filler interaction are analyzed by FT-IR.展开更多
The hybrid finite analytic(HFA) method is a kind of numerical scheme in rectangular element. In order to simulate the shallow circulation in irregular bathymetry by HFA scheme, the model in sigma coordinate system was...The hybrid finite analytic(HFA) method is a kind of numerical scheme in rectangular element. In order to simulate the shallow circulation in irregular bathymetry by HFA scheme, the model in sigma coordinate system was obtained. The model has been tested against three cases: 1) Wind induced circulation; 2) Density driven circulation and 3) Seiche oscillation. The results obtained in the present study compare well with those obtained from the corresponding analytical solutions under idealized for the above three cases. The hybrid finite analytic method and the circulation model in sigma coordinate system can be used calculate the flow and water quality in estuaries and coastal waters.展开更多
In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tn...In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tnmcated water depth is 160 m and the model scale ), = 80. During the investigation, the optimization design of the equivalent-depth truncated system is performed by using the similarity of the static characteristics between the truncated system and the full depth one as the objective function. According to the truncated system, the corresponding physical test model is made. By adopting the coupling time domain simulation method, the tnmcated system model test is numerically reconstructed to carefully verify the computer simulation software and to adjust the corresponding hydrodynamic parameters. Based on the above work, the numerical extrapolation to the full depth system is performed by using the verified computer software and the adjusted hydrodyrmmic parameters. The full depth system model test is then performed in the basin and the results are compared with those from the numerical extrapolation. At last, the implementation procedure and the key technique of the hybrid model testing of the deep-sea platforms are summarized and printed. Through the above investigations, some beneficial conclusions are presented.展开更多
基金supported by National R&D Program through the National Research Foundation of Korea,grant number 2021M3H4A1A01079300the Korea Research Institute of Chemical Technology Core Research Program funded by the Korea Research Council for Industrial Science and Technology,grant number KS2222-10National Natural Science Foundation of China(22109169).
文摘Electrochemical water splitting has been demonstrated as a promising technology for the renewable generation of green hydrogen from water.Despite the extensive progress in materials science,one particular challenge for further development towards industrial application lies in the rational design and exploitation of efficient and cost-effective materials,especially oxygen evolution reaction(OER)electrocatalysts at the anode.In addition,attempts to replace the OER with other more oxidizable anode reactions are being evaluated as a groundbreaking strategy for generating hydrogen at lower potentials and reducing overall energy costs while producing valuable chemicals simultaneously.Compared with Fe/Co/Ni-based compounds,Cu-based materials have not received extensive research attention for electrode designs despite their high conductivity and abundant earth reserves.In this review,combining with the advantages of a three-dimensional network structure of metal foams,we summarize recent progress on Cu foam(CF)-derived materials as efficient electrocatalysts towards pure water electrolysis and hybrid water electrolysis.The advantages of CF and design strategies to enhance the electrocatalytic activity and operational durability are presented first.Catalyst design and fabrication strategies are then highlighted and the structure-activity relationship is also discussed.Finally,we propose challenges and perspectives on self-supported electrodes beyond CF-derived materials.
基金We acknowledge the financial support from the Start-up Funding of the Huazhong University of Science and Technology(HUST)and the Program for HUST Academic Frontier Youth Team(2018QYTD15).
文摘Renewable energy-driven hydrogen generation from water electrolysis has been widely recognized as a promising approach to utilize sustainable energy resources,reduce our dependence on legacy fossil fuels and alleviate net carbon dioxide emissions.However,conventional water electrolyzers suffer from the high overpotentials,mainly due to the sluggish kinetics of anodic oxygen evolution reaction(OER).This reaction also generates reactive oxygen species that could degrade the proton exchange membrane and oxygen that may mix with the cathodic hydrogen to form explosive gaseous mixtures.To address these issues,an innovative hybrid water electrolysis strategy which involves a certain alternative oxidation reaction to replace OER has been developed,and has led to a burgeoning area that sparks much research interest in finding available alternative reactions and their corresponding electrocatalysts.Herein,we summarize the alternative reactions into three groups:(1)the reagentsacrificing type that can generate H2 with an ultra-low potential while the substrates are oxidized to valueless products;(2)the pollutant-degrading type at which environmental pollutants are used as substrates;(3)the valueadded type that produces valuable products at the anode.Catalyst and electrolyzer designs for hybrid electrolysis are also briefly discussed,with an emphasis on the catalyst reconstruction phenomenon.Finally,the present challenges and perspectives are put forward.
基金supported by the National Key R&D Program of China(2018YFA0209600)the National Natural Science Foundation of China(22022813 and 21878268)+2 种基金the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2019R01006)the National Postdoctoral Program for Innovative Talents(BX20180203)Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies(JJNY202003)。
文摘Electricity-driven water splitting to convert water into hydrogen(H_(2)has been widely regarded as an efficient approach for H_(2)production.Nevertheless,the energy conversion efficiency of it is greatly limited due to the disadvantage of the sluggish kinetic of oxidation evolution reaction(OER).To effectively address the issue,a novel concept of hybrid water electrolysis has been developed for energy–saving H_(2)production.This strategy aims to replace the sluggish kinetics of OER by utilizing thermodynamically favorable organics oxidation reaction to replace OER.Herein,recent advances in such water splitting system for boosting H_(2)evolution under low cell voltage are systematically summarized.Some notable progress of different organics oxidation reactions coupled with hydrogen evolution reaction(HER)are discussed in detail.To facilitate the development of hybrid water electrolysis,the major challenges and perspectives are also proposed.
文摘AIM:To investigate the feasibility and safety of Natural orifice trans-umbilical endoscopic cholecystectomy with a water-jet hybrid-knife in a non-survival porcine model.METHODS:Pure natural orifice transluminal endoscopic surgery(NOTES) cholecystectomy was performed on three non-survival pigs,by transumbilical approach,using a water-jet hybrid-knife. Under general anesthesia,the following steps detailed the procedure:(1) incision of the umbilicus followed by the passage of a double-channel flexible endsocope through an overtube into the peritoneal cavity;(2) establishment of pneumoperitoneum;(3) abdominal exploration;(4)endoscopic cholecystectomy:dissection of the gallbladder performed using water jet equipment,ligation of the cystic artery and duct conducted using nylon loops;and(5) necropsy with macroscopic evaluation.RESULTS:Transumbilical endoscopic cholecystectomy was successfully completed in the first and third pig,with minor bleedings. The dissection times were 137and 42 min,respectively. The total operation times were 167 and 69 min,respectively. And the lengths of resected specimen were 6.5 and 6.1 cm,respectively.Instillation of the fluid into the gallbladder bed produced edematous,distended tissue making separation safe and easy. Reliable ligation using double nylon loops insured the safety of cutting between the loops.There were no intraoperative complications or hemodynamic instability. Uncontrolled introperative bleeding occurred in the second case,leading to the operation failure.CONCLUSION:Pure NOTES trans-umbilical cholecystectomy with a water-jet hybrid-knife appears to be feasible and safe. Further investigation of this technique with long-term follow-up in animals is needed to confirm the preliminary observation.
文摘The main objectives of this research were to study the effect of water absorption on mechanical properties of hybrid fiber reinforcement for polypropylene composites. The poor resistance towards water absorption is one of the draw- backs of natural fibers. Hybrid filler-polypropylene composites are subjected to water immersion tests in order to study the effects of water absorption on the mechanical properties. Composites specimens containing 30 phr and 40 phr fiber weight were prepared by melt blending process. Water absorption tests were conducted by immersion specimens in distilled water at room temperature for different time durations (24, 48, 72, 96, 120, 144, 168, 192 hours). The tensile, flexural and impact properties were investigated before and after water absorption. The percentage of moisture uptake increased as the increasing order of the filler loading due to the high cellulose content. The phase morphology of wood flour/wheat husk polypropylene hybrid composites were investigated by SEM, the dynamic mechanical properties of the composite are analyzed by DMA & wheat, wood filler interaction are analyzed by FT-IR.
文摘The hybrid finite analytic(HFA) method is a kind of numerical scheme in rectangular element. In order to simulate the shallow circulation in irregular bathymetry by HFA scheme, the model in sigma coordinate system was obtained. The model has been tested against three cases: 1) Wind induced circulation; 2) Density driven circulation and 3) Seiche oscillation. The results obtained in the present study compare well with those obtained from the corresponding analytical solutions under idealized for the above three cases. The hybrid finite analytic method and the circulation model in sigma coordinate system can be used calculate the flow and water quality in estuaries and coastal waters.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No10602055)Nature Science Foundation of China Jiliang University (Grant No XZ0501)
文摘In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tnmcated water depth is 160 m and the model scale ), = 80. During the investigation, the optimization design of the equivalent-depth truncated system is performed by using the similarity of the static characteristics between the truncated system and the full depth one as the objective function. According to the truncated system, the corresponding physical test model is made. By adopting the coupling time domain simulation method, the tnmcated system model test is numerically reconstructed to carefully verify the computer simulation software and to adjust the corresponding hydrodynamic parameters. Based on the above work, the numerical extrapolation to the full depth system is performed by using the verified computer software and the adjusted hydrodyrmmic parameters. The full depth system model test is then performed in the basin and the results are compared with those from the numerical extrapolation. At last, the implementation procedure and the key technique of the hybrid model testing of the deep-sea platforms are summarized and printed. Through the above investigations, some beneficial conclusions are presented.