The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,...The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.展开更多
In overlapping distribution areas of Sorbus pohuashanensis and S.discolor in North China(Mount Tuoliang,Mount Xiling and Mount Baihua),Sorbus indi-viduals were found with pink fruit,which have never been recorded for ...In overlapping distribution areas of Sorbus pohuashanensis and S.discolor in North China(Mount Tuoliang,Mount Xiling and Mount Baihua),Sorbus indi-viduals were found with pink fruit,which have never been recorded for the flora of China.Fourteen morphological characters combined with four chloroplast DNA markers and internal transcribed spacer(ITS)were used to analyze the origin of the Sorbus individuals with pink fruits and their relationship to S.pohuashanensis and S.discolor.PCA,SDA and one-way(taxon)ANOVA of morphological characters provided convincing evidence of the hybrid ori-gin of Sorbus individuals with pink fruits based on a novel morphological character and many intermediate characters.Haplotype analysis based on four cpDNA markers showed that either S.pohuashanensis or S.discolor were maternal parents of Sorbus individuals with pink fruits.Incongru-ence of the position of Sorbus individuals with pink fruits between cpDNA and ITS in cluster trees supported by DNA sequence comparative analysis,implying former hybridiza-tion events between S.pohuashanensis and S.discolor.Mul-tiple hybridization events between S.pohuashanensis and S.discolor might have contributed to the generation of Sorbus individuals with pink fruits.This study has provided insights into hybridization between species of the same genus in sympatric areas,which is of great significance for the study of interspecific hybridization.展开更多
Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide...Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide polymorphisms(SNPs) and complete plastomes to examine genomic divergence and hybridization in Gentiana aristata, which is endemic to the Qinghai-Tibet Plateau(QTP) region. Genetic clustering revealed that G. aristata is characterized by geographic genetic structures with five clusters(West, East, Central, South and North). The West cluster has a specific morphological character(i.e., blue corolla) and higher values of FSTcompared to the remaining clusters, likely the result of the geological barrier formed by the Yangtze River. The West cluster diverged from the other clusters in the Early Pliocene;these remaining clusters diverged from one another in the Early Quaternary. Phylogenetic reconstructions based on SNPs and plastid data revealed substantial cyto-nuclear conflicts. Genetic clustering and D-statistics demonstrated rampant hybridization between the Central and North clusters,along the Bayankala Mountains, which form the geological barrier between the Central and North clusters. Species distribution modeling demonstrated the range of G. aristata expanded since the Last Interglacial period. Our findings provide genetic and morphological evidence of cryptic diversity in G. aristata, and identified rampant hybridization between genetic clusters along a geological barrier.These findings suggest that geological barriers and climatic fluctuations have an important role in triggering diversification as well as hybridization, indicating that cryptic diversity and hybridization are essential factors in biodiversity formation within the QTP region.展开更多
Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where p...Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where parental species may exhibit reduced fitnesses. Moreover, it is unknown whether future ecosystem change will increase the prevalence of hybridization. Ficus heterostyla and F. squamosa are closely related species co-distributed from southern Thailand to southwest China where hybridization, yielding viable seeds, has been documented. As a robust test of ecological factors driving hybridization, we investigated spatial hybridization signatures based on nuclear microsatellites from extensive population sampling across a widespread contact range. Both species showed high population differentiation and strong patterns of isolation by distance. Admixture estimates exposed asymmetric interspecific gene flow.Signatures of hybridization increase significantly towards higher latitude zones, peaking at the northern climatic margins. Geographic variation in reproductive phenology combined with ecologically challenging marginal habitats may promote this phenomenon. Our work is a first systematic evaluation of such patterns in a comprehensive, latitudinally-based clinal context, and indicates that tendency to hybridize appears strongly influenced by environmental conditions. Moreover, that future climate change scenarios will likely alter and possibly augment cases of hybridization at ecosystem scales.展开更多
The identification and understanding of cryptic intraspecific evolutionary units(lineages) are crucial for planning effective conservation strategies aimed at preserving genetic diversity in endangered species.However...The identification and understanding of cryptic intraspecific evolutionary units(lineages) are crucial for planning effective conservation strategies aimed at preserving genetic diversity in endangered species.However, the factors driving the evolution and maintenance of these intraspecific lineages in most endangered species remain poorly understood. In this study, we conducted resequencing of 77 individuals from 22 natural populations of Davidia involucrata, a “living fossil” dove tree endemic to central and southwest China. Our analysis revealed the presence of three distinct local lineages within this endangered species, which emerged approximately 3.09 and 0.32 million years ago. These divergence events align well with the geographic and climatic oscillations that occurred across the distributional range.Additionally, we observed frequent hybridization events between the three lineages, resulting in the formation of hybrid populations in their adjacent as well as disjunct regions. These hybridizations likely arose from climate-driven population expansion and/or long-distance gene flow. Furthermore, we identified numerous environment-correlated gene variants across the total and many other genes that exhibited signals of positive evolution during the maintenance of two major local lineages. Our findings shed light on the highly dynamic evolution underlying the remarkably similar phenotype of this endangered species. Importantly, these results not only provide guidance for the development of conservation plans but also enhance our understanding of evolutionary past for this and other endangered species with similar histories.展开更多
Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understa...Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understanding the progressive damage mechanisms of slopes based on monitoring image data.Inspired by recent advances in computer vision,deep learning(DL)models have been widely utilized for image-based fracture identification.The multi-scale characteristics,image resolution and annotation quality of images will cause a scale-space effect(SSE)that makes features indistinguishable from noise,directly affecting the accuracy.However,this effect has not received adequate attention.Herein,we try to address this gap by collecting slope images at various proportional scales and constructing multi-scale datasets using image processing techniques.Next,we quantify the intensity of feature signals using metrics such as peak signal-to-noise ratio(PSNR)and structural similarity(SSIM).Combining these metrics with the scale-space theory,we investigate the influence of the SSE on the differentiation of multi-scale features and the accuracy of recognition.It is found that augmenting the image's detail capacity does not always yield benefits for vision-based recognition models.In light of these observations,we propose a scale hybridization approach based on the diffusion mechanism of scale-space representation.The results show that scale hybridization strengthens the tolerance of multi-scale feature recognition under complex environmental noise interference and significantly enhances the recognition accuracy of GD.It also facilitates the objective understanding,description and analysis of the rock behavior and stability of slopes from the perspective of image data.展开更多
Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept ...Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems.展开更多
Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction(HER)catalysts is a key factor for developing energy conversion technologies.Currently,antiperovskite nitride CuNMn_(3)has gar...Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction(HER)catalysts is a key factor for developing energy conversion technologies.Currently,antiperovskite nitride CuNMn_(3)has garnered significant interest due to its remarkable properties such as negative/zero thermal expansion and magnetocaloric effects.However,when utilized as hydrogen evolution catalysts,it encounters large challenge resulting from excessively strong/weak interactions with adsorbed H on Mn/Cu active sites,which leads to low HER activity.In this study,we introduce an asymmetric orbital hybridization strategy in Zn-doped Cu_(1-x)Zn_(x)NMn_(3)by leveraging the localization of Zn electronic states to reconfigure the electronic structures of Cu and Mn,thereby reducing the energy barrier for water dissociation and optimizing Cu and Mn active sites for hydrogen adsorption and H_(2)production.Electrochemical evaluations reveal that Cu_(0.85)Zn_(0.15)NMn_(3)with x=0.15 demonstrates exceptional electrocatalytic activity in alkaline electrolytes.A low overpotential of 52 mV at 10 mA cm^(-2)and outstanding stability over a 150-h test period are achieved,surpassing commercial Pt/C.This research offers a novel strategy for enhancing HER performance by modulating asymmetric hybridization of electron orbitals between multiple metal atoms within a material structure.展开更多
High-entropy catalysts featuring exceptional properties are,in no doubt,playing an increasingly significant role in aprotic lithium-oxygen batteries.Despite extensive effort devoted to tracing the origin of their unpa...High-entropy catalysts featuring exceptional properties are,in no doubt,playing an increasingly significant role in aprotic lithium-oxygen batteries.Despite extensive effort devoted to tracing the origin of their unparalleled performance,the relationships between multiple active sites and reaction intermediates are still obscure.Here,enlightened by theoretical screening,we tailor a high-entropy perovskite fluoride(KCoMnNiMgZnF_(3)-HEC)with various active sites to overcome the limitations of conventional catalysts in redox process.The entropy effect modulates the d-band center and d orbital occupancy of active centers,which optimizes the d–p hybridization between catalytic sites and key intermediates,enabling a moderate adsorption of LiO_(2)and thus reinforcing the reaction kinetics.As a result,the Li–O2 battery with KCoMnNiMgZnF_(3)-HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability,preceding majority of traditional catalysts reported.These encouraging results provide inspiring insights into the electron manipulation and d orbital structure optimization for advanced electrocatalyst.展开更多
In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embed...In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embedding tissue in paraffin wax can take a long time and might result in RNA degradation and decreased signals.Here,we developed an optimized protocol to simplify the process and improve RNA sensitivity.We combined embedding tissue in low melting-point Steedman’s wax with processing tissue sections in solution,as in the whole-mount ISH method in the optimized protocol.Using the optimized protocol,we examined the expression patterns of the CLAVATA3(CLV3)and WUSCHEL(WUS)genes in shoot apical meristems and floral meristems of Cucumis sativus(cucumber)and Arabidopsis thaliana(Arabidopsis).The optimized protocol saved 4–5 days of experimental period compared with the standard ISH protocol using paraffin wax.Moreover,the optimized protocol achieved high signal sensitivity.The optimized protocol was successful for both cucumber and Arabidopsis,which indicates it might have general applicability to most plants.展开更多
Relationship of plasmonic properties of multiple clusters to molecular interactions and properties of a single cluster or molecule have become increasingly important due to the continuous emergence of molecular and cl...Relationship of plasmonic properties of multiple clusters to molecular interactions and properties of a single cluster or molecule have become increasingly important due to the continuous emergence of molecular and cluster devices or systems.A hybrid phenomenon similar to plasmonic nanoparticle hybridization exists between two molecules with plasmon excitation modes.We use linear-response time-dependent density functional theory,real-time propagation time-dependent density functional theory,the plasmonicity index,and transition contribution maps(TCMs)to identify the plasmon excitation modes for the linear polyenes octatetraene with–OH and–NH_(2)groups and analyze the hybridization characteristics using charge transitions.The results show that molecular plasmon hybridization exists when the two molecules are coupled.The TCM analysis shows that the plasmon modes and hybridization result from collective and single-particle excitation.The plasmon mode is stronger,and the individual properties of the molecules are maintained after coupling when there is extra charge depose in the molecules because the electrons are moving in the molecules.This study provides new insights into the molecular plasmon hybridization of coupled molecules.展开更多
基金supported by the National Natural Science Foundation of China(21905253,51973200,and 52122308)the Natural Science Foundation of Henan(202300410372)the National Supercomputing Center in Zhengzhou
文摘The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.
基金This study was supported by the National Natural Science Foundation of China,Grant/Award Number:32071779.
文摘In overlapping distribution areas of Sorbus pohuashanensis and S.discolor in North China(Mount Tuoliang,Mount Xiling and Mount Baihua),Sorbus indi-viduals were found with pink fruit,which have never been recorded for the flora of China.Fourteen morphological characters combined with four chloroplast DNA markers and internal transcribed spacer(ITS)were used to analyze the origin of the Sorbus individuals with pink fruits and their relationship to S.pohuashanensis and S.discolor.PCA,SDA and one-way(taxon)ANOVA of morphological characters provided convincing evidence of the hybrid ori-gin of Sorbus individuals with pink fruits based on a novel morphological character and many intermediate characters.Haplotype analysis based on four cpDNA markers showed that either S.pohuashanensis or S.discolor were maternal parents of Sorbus individuals with pink fruits.Incongru-ence of the position of Sorbus individuals with pink fruits between cpDNA and ITS in cluster trees supported by DNA sequence comparative analysis,implying former hybridiza-tion events between S.pohuashanensis and S.discolor.Mul-tiple hybridization events between S.pohuashanensis and S.discolor might have contributed to the generation of Sorbus individuals with pink fruits.This study has provided insights into hybridization between species of the same genus in sympatric areas,which is of great significance for the study of interspecific hybridization.
基金financial support provided by the Foundation of Henan Educational Committee (22A180024)Natural Science Foundation of Henan Province (232300420212)。
文摘Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide polymorphisms(SNPs) and complete plastomes to examine genomic divergence and hybridization in Gentiana aristata, which is endemic to the Qinghai-Tibet Plateau(QTP) region. Genetic clustering revealed that G. aristata is characterized by geographic genetic structures with five clusters(West, East, Central, South and North). The West cluster has a specific morphological character(i.e., blue corolla) and higher values of FSTcompared to the remaining clusters, likely the result of the geological barrier formed by the Yangtze River. The West cluster diverged from the other clusters in the Early Pliocene;these remaining clusters diverged from one another in the Early Quaternary. Phylogenetic reconstructions based on SNPs and plastid data revealed substantial cyto-nuclear conflicts. Genetic clustering and D-statistics demonstrated rampant hybridization between the Central and North clusters,along the Bayankala Mountains, which form the geological barrier between the Central and North clusters. Species distribution modeling demonstrated the range of G. aristata expanded since the Last Interglacial period. Our findings provide genetic and morphological evidence of cryptic diversity in G. aristata, and identified rampant hybridization between genetic clusters along a geological barrier.These findings suggest that geological barriers and climatic fluctuations have an important role in triggering diversification as well as hybridization, indicating that cryptic diversity and hybridization are essential factors in biodiversity formation within the QTP region.
基金supported by the National Natural Science Foundation of China (3180031332261123001)+1 种基金Applied Basic Research Foundation of Yunnan Province (202301AT070378, 2019FB034)the “Light of West China” Program of the Chinese Academic of Sciences to J.-F.Huang。
文摘Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where parental species may exhibit reduced fitnesses. Moreover, it is unknown whether future ecosystem change will increase the prevalence of hybridization. Ficus heterostyla and F. squamosa are closely related species co-distributed from southern Thailand to southwest China where hybridization, yielding viable seeds, has been documented. As a robust test of ecological factors driving hybridization, we investigated spatial hybridization signatures based on nuclear microsatellites from extensive population sampling across a widespread contact range. Both species showed high population differentiation and strong patterns of isolation by distance. Admixture estimates exposed asymmetric interspecific gene flow.Signatures of hybridization increase significantly towards higher latitude zones, peaking at the northern climatic margins. Geographic variation in reproductive phenology combined with ecologically challenging marginal habitats may promote this phenomenon. Our work is a first systematic evaluation of such patterns in a comprehensive, latitudinally-based clinal context, and indicates that tendency to hybridize appears strongly influenced by environmental conditions. Moreover, that future climate change scenarios will likely alter and possibly augment cases of hybridization at ecosystem scales.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research program (No. 2019QZKK0502)Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB31010300)+1 种基金Fundamental Research Funds for the Central UniversitiesInternational Collaboration 111 Program (BP0719040)。
文摘The identification and understanding of cryptic intraspecific evolutionary units(lineages) are crucial for planning effective conservation strategies aimed at preserving genetic diversity in endangered species.However, the factors driving the evolution and maintenance of these intraspecific lineages in most endangered species remain poorly understood. In this study, we conducted resequencing of 77 individuals from 22 natural populations of Davidia involucrata, a “living fossil” dove tree endemic to central and southwest China. Our analysis revealed the presence of three distinct local lineages within this endangered species, which emerged approximately 3.09 and 0.32 million years ago. These divergence events align well with the geographic and climatic oscillations that occurred across the distributional range.Additionally, we observed frequent hybridization events between the three lineages, resulting in the formation of hybrid populations in their adjacent as well as disjunct regions. These hybridizations likely arose from climate-driven population expansion and/or long-distance gene flow. Furthermore, we identified numerous environment-correlated gene variants across the total and many other genes that exhibited signals of positive evolution during the maintenance of two major local lineages. Our findings shed light on the highly dynamic evolution underlying the remarkably similar phenotype of this endangered species. Importantly, these results not only provide guidance for the development of conservation plans but also enhance our understanding of evolutionary past for this and other endangered species with similar histories.
基金supported by the National Natural Science Foundation of China(Grant No.52090081)the State Key Laboratory of Hydro-science and Hydraulic Engineering(Grant No.2021-KY-04).
文摘Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understanding the progressive damage mechanisms of slopes based on monitoring image data.Inspired by recent advances in computer vision,deep learning(DL)models have been widely utilized for image-based fracture identification.The multi-scale characteristics,image resolution and annotation quality of images will cause a scale-space effect(SSE)that makes features indistinguishable from noise,directly affecting the accuracy.However,this effect has not received adequate attention.Herein,we try to address this gap by collecting slope images at various proportional scales and constructing multi-scale datasets using image processing techniques.Next,we quantify the intensity of feature signals using metrics such as peak signal-to-noise ratio(PSNR)and structural similarity(SSIM).Combining these metrics with the scale-space theory,we investigate the influence of the SSE on the differentiation of multi-scale features and the accuracy of recognition.It is found that augmenting the image's detail capacity does not always yield benefits for vision-based recognition models.In light of these observations,we propose a scale hybridization approach based on the diffusion mechanism of scale-space representation.The results show that scale hybridization strengthens the tolerance of multi-scale feature recognition under complex environmental noise interference and significantly enhances the recognition accuracy of GD.It also facilitates the objective understanding,description and analysis of the rock behavior and stability of slopes from the perspective of image data.
基金financially supported by the National Natural Science Foundation of China(21972068,22072067,22232004)the High-level Talents Project of Jinling Institute of Technology(jit-b-202164)。
文摘Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems.
基金supported by the National Key R&D Program of China(No.2021YFB2800700)National Natural Science Foundation of China(Nos.12274210,62227820,and 12174183)+1 种基金Partial support is from NSF of Jiangsu Province(No.BK20220006)the Fundamental Research Funds for the Central Universities and Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves。
文摘Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction(HER)catalysts is a key factor for developing energy conversion technologies.Currently,antiperovskite nitride CuNMn_(3)has garnered significant interest due to its remarkable properties such as negative/zero thermal expansion and magnetocaloric effects.However,when utilized as hydrogen evolution catalysts,it encounters large challenge resulting from excessively strong/weak interactions with adsorbed H on Mn/Cu active sites,which leads to low HER activity.In this study,we introduce an asymmetric orbital hybridization strategy in Zn-doped Cu_(1-x)Zn_(x)NMn_(3)by leveraging the localization of Zn electronic states to reconfigure the electronic structures of Cu and Mn,thereby reducing the energy barrier for water dissociation and optimizing Cu and Mn active sites for hydrogen adsorption and H_(2)production.Electrochemical evaluations reveal that Cu_(0.85)Zn_(0.15)NMn_(3)with x=0.15 demonstrates exceptional electrocatalytic activity in alkaline electrolytes.A low overpotential of 52 mV at 10 mA cm^(-2)and outstanding stability over a 150-h test period are achieved,surpassing commercial Pt/C.This research offers a novel strategy for enhancing HER performance by modulating asymmetric hybridization of electron orbitals between multiple metal atoms within a material structure.
基金P.G.acknowledges the financial support from the Youth Foundation of Shandong Natural Science Foundation(No.ZR2023OB230)National Natural Science Foundation(No.22309035)Double First-class Discipline Construction Fund Project of Harbin Institute of Technology at Weihai(No.2023SYLHY11).
文摘High-entropy catalysts featuring exceptional properties are,in no doubt,playing an increasingly significant role in aprotic lithium-oxygen batteries.Despite extensive effort devoted to tracing the origin of their unparalleled performance,the relationships between multiple active sites and reaction intermediates are still obscure.Here,enlightened by theoretical screening,we tailor a high-entropy perovskite fluoride(KCoMnNiMgZnF_(3)-HEC)with various active sites to overcome the limitations of conventional catalysts in redox process.The entropy effect modulates the d-band center and d orbital occupancy of active centers,which optimizes the d–p hybridization between catalytic sites and key intermediates,enabling a moderate adsorption of LiO_(2)and thus reinforcing the reaction kinetics.As a result,the Li–O2 battery with KCoMnNiMgZnF_(3)-HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability,preceding majority of traditional catalysts reported.These encouraging results provide inspiring insights into the electron manipulation and d orbital structure optimization for advanced electrocatalyst.
基金supported by the National Natural Science Foundation of China(32002036)。
文摘In situ mRNA hybridization(ISH)is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.The most common ISH protocol uses paraffin wax;however,embedding tissue in paraffin wax can take a long time and might result in RNA degradation and decreased signals.Here,we developed an optimized protocol to simplify the process and improve RNA sensitivity.We combined embedding tissue in low melting-point Steedman’s wax with processing tissue sections in solution,as in the whole-mount ISH method in the optimized protocol.Using the optimized protocol,we examined the expression patterns of the CLAVATA3(CLV3)and WUSCHEL(WUS)genes in shoot apical meristems and floral meristems of Cucumis sativus(cucumber)and Arabidopsis thaliana(Arabidopsis).The optimized protocol saved 4–5 days of experimental period compared with the standard ISH protocol using paraffin wax.Moreover,the optimized protocol achieved high signal sensitivity.The optimized protocol was successful for both cucumber and Arabidopsis,which indicates it might have general applicability to most plants.
基金the National Natural Science Foundation of China(Grant Nos.12274054 and 12074054)the Fundamental Research Funds for the Central Universities(Grant No.DUT21LK06).
文摘Relationship of plasmonic properties of multiple clusters to molecular interactions and properties of a single cluster or molecule have become increasingly important due to the continuous emergence of molecular and cluster devices or systems.A hybrid phenomenon similar to plasmonic nanoparticle hybridization exists between two molecules with plasmon excitation modes.We use linear-response time-dependent density functional theory,real-time propagation time-dependent density functional theory,the plasmonicity index,and transition contribution maps(TCMs)to identify the plasmon excitation modes for the linear polyenes octatetraene with–OH and–NH_(2)groups and analyze the hybridization characteristics using charge transitions.The results show that molecular plasmon hybridization exists when the two molecules are coupled.The TCM analysis shows that the plasmon modes and hybridization result from collective and single-particle excitation.The plasmon mode is stronger,and the individual properties of the molecules are maintained after coupling when there is extra charge depose in the molecules because the electrons are moving in the molecules.This study provides new insights into the molecular plasmon hybridization of coupled molecules.