The two bay scallop subspecies,Argopecten irradians irradians(NN)and A.i.concentricus(SS),are fast growing and major cultured bivalves in China.However,their relatively small sizes and decreasing production traits cau...The two bay scallop subspecies,Argopecten irradians irradians(NN)and A.i.concentricus(SS),are fast growing and major cultured bivalves in China.However,their relatively small sizes and decreasing production traits caused by long-term inbreeding have been major concerns to the industry in the last two decades.Hybridization between the two bay scallop subspecies may provide a new approach to breed a new variety with superior production traits for the industry.For this end,in this study,we hybridized the two bay scallop subspecies in order to obtain a new strain that incorporates the genes of both subspecies.No significant difference was found in fertilization rate,hatching rate and metamorphosis rate between the purebred and crossbred cohorts(NN♀×SS♂,denoted as NS;SS♀×NN♂,denoted as SN).Both mating strategy(intra-vs.inter-population crosses)and egg origin had significant effects on growth and survival at the larval stage.Heterosis was observed in the crossbred and was more pronounced in older stages.Genetic diversity of the reciprocal hybrids,especially that of SN,was increased compared with the purebred cohorts.Almost all hybrids were completely fertile and able to reproduce by selffertilization or by backcrossing with either parent.Apparently,male sterile individuals whose gonads were fully occupied by the ovary part at mature stage were found in the hybrids for the first time.The hybrids,especially SN,may provide precious germplasm resources for the production of ternary hybrids with the Peruvian scallop,A.purpuratus.展开更多
Renewable energy driven N_(2) electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production.However,relevant out-lab research is still in its infancy.Herein,a novel S...Renewable energy driven N_(2) electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production.However,relevant out-lab research is still in its infancy.Herein,a novel Sn-based MXene/MAX hybrid with abundant Sn vacancies,Sn@Ti_(2)CTX/Ti_(2)SnC–V,was synthesized by controlled etching Sn@Ti_(2)SnC MAX phase and demonstrated as an efficient electrocatalyst for electrocatalytic N2 reduction.Due to the synergistic effect of MXene/MAX heterostructure,the existence of Sn vacancies and the highly dispersed Sn active sites,the obtained Sn@Ti2CTX/Ti_(2)SnC–V exhibits an optimal NH_(3) yield of 28.4μg h^(−1) mg_(cat)^(−1) with an excellent FE of 15.57% at−0.4 V versus reversible hydrogen electrode in 0.1 M Na_(2)SO_(4),as well as an ultra-long durability.Noticeably,this catalyst represents a satisfactory NH3 yield rate of 10.53μg h^(−1) mg^(−1) in the home-made simulation device,where commercial electrochemical photovoltaic cell was employed as power source,air and ultrapure water as feed stock.The as-proposed strategy represents great potential toward ammonia production in terms of financial cost according to the systematic technical economic analysis.This work is of significance for large-scale green ammonia production.展开更多
This study aimed to discriminate ten Cameroonian cocoa hybrids according to their total fat, fatty acid composition, tocopherol and tocotrienol profiles. Six cocoa clones from the gene banks of the Cameroon Cocoa Deve...This study aimed to discriminate ten Cameroonian cocoa hybrids according to their total fat, fatty acid composition, tocopherol and tocotrienol profiles. Six cocoa clones from the gene banks of the Cameroon Cocoa Development Corporation were used to create hybrids. The determination of fatty acid composition was carried out by using a gas chromatography (GC) apparatus coupled by a flame ion detector (FID). Tocopherol and tocotrienol analysis was performed by upper high-performance liquid chromatography (UHPLC). Information on the impact of the genotype on the cocoa fat composition was provided. The major fatty acids (FA) in fermented samples are stearic (34.57%), palmitic (26.13%), oleic (34.13%) and linoleic (3.16%) acids. (35.05% to 35.6%). SCA12 × ICS40, SCA12 × SNK13, SNK13 × T79/501 have the least hard cocoa butters. Tocopherols analysis showed a predominance of γ-tocopherols (94.64 ± 1.51 to 292.16 ± 3.17 µg∙g<sup>−1</sup>), whereas only a small amount of β and δ-tocopherol (from 0.46 to 2.78 µg∙g<sup>−1</sup> and 0.12 to 5.82 respectively) was observed. No γ-tocotrienol was found in fermented samples. A differentiation in terms of total fat and tocopherol content was observed amongst hybrids with the same mother-clone, suggesting an impact of pollen on these compounds.展开更多
Polyimide(PI)is a promising electronic packaging material,but it remains challenging to obtain an all-organic PI hybrid film with decreased dielectric constant and loss without modifying the monomer.Herein,a series of...Polyimide(PI)is a promising electronic packaging material,but it remains challenging to obtain an all-organic PI hybrid film with decreased dielectric constant and loss without modifying the monomer.Herein,a series of allorganic PI hybrid films were successfully prepared by introducing the covalent organic framework(COF),which could induce the formation of the cross-linking structure in the PI matrix.Due to the synergistic effects of the COF fillers and the cross-linking structure,the PI/COF hybrid film containing 2 wt%COF exhibited the lowest dielectric constant of 2.72 and the lowest dielectric loss(tanδ)of 0.0077 at 1 MHz.It is attributed to the intrinsic low dielectric constant of COF and a large number of mesopores within the PI.Besides,the cross-linking network of PI prevents the molecular chains from stacking and improves the fraction of free volume(FFV).The molecular dynamics simulation results are well consistent with the dielectric properties data.Furthermore,the PI/COF hybrid film with 5 wt%COF showed a significant enhancement in breakdown strength,which increased to 412.8 kV/mm as compared with pure PI.In addition,the PI/COF hybrid film achieve to reduce the dielectric constant and thermal expansion coefficient(CTE).It also exhibited excellent thermal,hydrophobicity,and mechanical performance.The all-organic PI/COF hybrid films have great commercial potential as next-generation electronic packaging materials.展开更多
Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to ma...Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to make 285 single-cross hybrids in a partial-diallel cross design.These lines represented a mini-core collection of Chinese maize germplasm and comprised 18 inbred lines from the Stiff Stalk heterotic group and 16 inbred lines from the Non-Stiff Stalk heterotic group.The parents were genotyped by sequencing and the 285 hybrids were phenotyped for nine yield and yield-related traits at two locations in the summer sowing area(SUS)and three locations in the spring sowing area(SPS)in the main maizeproducing regions of China.Multiple GP models were employed to assess the accuracy of trait prediction in the hybrids.By ten-fold cross-validation,the prediction accuracies of yield performance of the hybrids estimated by the genomic best linear unbiased prediction(GBLUP)model in SUS and SPS were 0.51 and 0.46,respectively.The prediction accuracies of the remaining yield-related traits estimated with GBLUP ranged from 0.49 to 0.86 and from 0.53 to 0.89 in SUS and SPS,respectively.When additive,dominance,epistasis effects,genotype-by-environment interaction,and multi-trait effects were incorporated into the prediction model,the prediction accuracy of hybrid yield performance was improved.The ratio of training to testing population and size of training population optimal for yield prediction were determined.Multiple prediction models can improve prediction accuracy in hybrid breeding.展开更多
Chloroplast simple sequence repeat (cpSSR) markers in Citrus were developed and successfully used to analyze chloroplast genome inheritance of Citrus somatic hybrids. Twenty-two previously reported cpSSR primer pairs ...Chloroplast simple sequence repeat (cpSSR) markers in Citrus were developed and successfully used to analyze chloroplast genome inheritance of Citrus somatic hybrids. Twenty-two previously reported cpSSR primer pairs from pine (Pinus thunbergii Parl.), rice (Otyza sativa L.) and tobacco (Nicotiana tabacum L.) were tested in Citrus, nine of which could amplify intensive PCR products by agarose gel electrophoresis. Chloroplast genome inheritance of Citrus somatic hybrids from nine fusions was then analyzed, and five of the nine pre-screened primer pairs showed polymorphisms by polyacrylamide gel electrophoresis. The results revealed the random inheritance nature of chloroplast genome in all analyzed Citrus somatic hybrids, which was in agreement with previous reports based on RFLP or CAPS analyses. It was also shown that cpSSR is a more efficient tool in chloroplast genome analyses of somatic hybrids in higher plants, compared with the conventional RFLP or CAPS analyses.展开更多
[ Objective] The aim of this study was to investigate the growth and morphological characteristics of juvenile hybrids of grass carp. [Method] Three inbred generations of YR (Yangtze River stock ♀×Yangtze River...[ Objective] The aim of this study was to investigate the growth and morphological characteristics of juvenile hybrids of grass carp. [Method] Three inbred generations of YR (Yangtze River stock ♀×Yangtze River stock ♂ ), ZR (Zhujiang River stock ♀ ×Zhujiang River stock♂ ) and hybrids F1 ( Yangtze River stock ♀ × Zhujiang River stock ♂ ) were established, and their growth or morphological data were also measured. [ Result] The orders of body weight, standard length and absolute growth rate were F1 〉 ZR 〉 YR. No significant difference was found in body weight or standard length of 50 day-old generations ( P〉0. 05), while there was an extremely significantly difference in those of 170 day-old generations ( P 〈0.01 ). However, the absolute growth rate of F1 was 20.00% and 50.00% higher than that of ZR and YR respectively, and no significant difference was found between F1 and ZR ( P 〉 0.05), but significant difference between F1 and YR ( P 〈 0.05). F1 showed a significant hybrid vigor with rate of 20.09%. There was no significant difference among three inbred generations in standard length/total length ( P 〉 0.05), while significant difference in head length/total length, body height/standard length and body width/standard length ( P 〈 0.05), which indicated that F1 had the characteristics of shorter head, higher and wider body. [ Conclusion]F1 has advantages in growth performance and morphological characteristics.展开更多
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper...Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.展开更多
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ...The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.展开更多
[Objective] This study aimed to screen a set of SSR core primers suitable for purity identification of pepper (Capsicum) hybrids. [Method] DNA fingerprint of 100 pepper hybrids was analyzed using 17 SSR primers. [Re...[Objective] This study aimed to screen a set of SSR core primers suitable for purity identification of pepper (Capsicum) hybrids. [Method] DNA fingerprint of 100 pepper hybrids was analyzed using 17 SSR primers. [Result] According to the polymorphism and heterozygosity, Hpms1-214, Es395 and Hpmsl-5 were determined as three preferred core primers for purity identification of pepper hybrids. By using these three preferred core primers, 97 pepper hybrids (accounting for 97%) had heterozygous band pattern with at least one primer. Es330, Es363, Epms923, Es120 and Es64 were determined as candidate core primers for purity identification of pepper hybrids. Specific primers of 14 varieties were obtained, which could be used to further screen parent-complementary primers of each pepper hybrid. [Con- clusion] This study laid the foundation for constructing standard DNA fingerprints for purity identification of pepper hybrids.展开更多
Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis...Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.展开更多
Protoplasts isolated from cotyledon-derived calli of Actinidia chinensis var. chinensis (2n = 2x=58) were fused by the PEG method with cotyledon-callus protoplasts of A. deliciosa var. deliciosa (2n = 6x = 174) or wit...Protoplasts isolated from cotyledon-derived calli of Actinidia chinensis var. chinensis (2n = 2x=58) were fused by the PEG method with cotyledon-callus protoplasts of A. deliciosa var. deliciosa (2n = 6x = 174) or with mesophyll protoplasts of A. kolomikta (2n = 2x = 58), respectively. Randomly amplified polymorphic DNA (RAPD) markers and flow cytometry was used to confirm the occurrence of somatic hybrids. RAPD results with some primers surveyed indicated that one clone (A. chinensis + A. deliciosa) and four clones (A. chinensis + A. kolomikta) had RAPD banding patterns which combined the parental banding profiles. Ploidy levels of the (A. chinensis + A. deliciosa) clone were deduced as octoploid (2n = 8x), and the (A. chinensis + A. kolomikta) clones were tetraploid (2n = 4x), triploid (2n = 3x) or pentaploid (2n = 5x). The clones were confirmed as interspecific somatic hybrids in Actinidia.展开更多
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient...Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.展开更多
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd...The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.展开更多
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy...In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.展开更多
To understand the inter-hybridization between Cucumis ssp.plants,we used 150 melon varieties as female parents to cross with Cucumis metuliferus and Cucumis anguria.Only melon accessions V2 and V129 set fruits,but see...To understand the inter-hybridization between Cucumis ssp.plants,we used 150 melon varieties as female parents to cross with Cucumis metuliferus and Cucumis anguria.Only melon accessions V2 and V129 set fruits,but seeds from fruits V2(V129)×C.metuliferus were abortive.A few of seeds from the bottom of fruit V2(V129)×C.anguria were fertile.Sequence-related amplified polymorphism(SRAP)molecular markers were used to analyze the progenies of inter-specific hybridization between C.anguria and melon V129.One pair primer(E14/M2)was found effective in amplification on male parent characteristic bands from the hybrids,suggesting that some DNA exchange had happened between C.anguria and melon V129.This study provided data for analyzing the mechanism of inter-hybridization between Cucumis plants.展开更多
Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modul...Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.展开更多
基金the National Natural Science Foundation of China(No.31972791)the Earmarked Fund for Agriculture Seed Improvement Project of Shandong Province(No.2020LZGC016)+1 种基金the Scientific and Technological Project of Yantai,Shandong Province(No.2022XCZX083)the Earmarked Fund for Shandong Modern Agro-Industry Technology Research System(No.SDAIT-14)。
文摘The two bay scallop subspecies,Argopecten irradians irradians(NN)and A.i.concentricus(SS),are fast growing and major cultured bivalves in China.However,their relatively small sizes and decreasing production traits caused by long-term inbreeding have been major concerns to the industry in the last two decades.Hybridization between the two bay scallop subspecies may provide a new approach to breed a new variety with superior production traits for the industry.For this end,in this study,we hybridized the two bay scallop subspecies in order to obtain a new strain that incorporates the genes of both subspecies.No significant difference was found in fertilization rate,hatching rate and metamorphosis rate between the purebred and crossbred cohorts(NN♀×SS♂,denoted as NS;SS♀×NN♂,denoted as SN).Both mating strategy(intra-vs.inter-population crosses)and egg origin had significant effects on growth and survival at the larval stage.Heterosis was observed in the crossbred and was more pronounced in older stages.Genetic diversity of the reciprocal hybrids,especially that of SN,was increased compared with the purebred cohorts.Almost all hybrids were completely fertile and able to reproduce by selffertilization or by backcrossing with either parent.Apparently,male sterile individuals whose gonads were fully occupied by the ovary part at mature stage were found in the hybrids for the first time.The hybrids,especially SN,may provide precious germplasm resources for the production of ternary hybrids with the Peruvian scallop,A.purpuratus.
基金This work was supported by the National Natural Science Foundation of China(Nos.22308139,52071171,52202248)Natural Science Foundation of Liaoning Province(2023-MS-140)+11 种基金Liaoning BaiQianWan Talents Program(LNBQW2018B0048)Shenyang Science and Technology Project(21-108-9-04)Young Scientific and Technological Talents Project of the Department of Education of Liaoning Province(LQN202008)Key Research Project of Department of Education of Liaoning Province(LJKZZ20220015)Foundation of State Key Laboratory of Clean and Efficient Coal Utilization,Taiyuan University of Technology(MJNYSKL202301)Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(KF2023006)Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization,Anhui University of Technology(CHV22-05)Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)Linkage Project(LP210100467,LP210200504,LP210200345,LP220100088)Industrial Transformation Training Centre(IC180100005)schemesthe Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077).
文摘Renewable energy driven N_(2) electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production.However,relevant out-lab research is still in its infancy.Herein,a novel Sn-based MXene/MAX hybrid with abundant Sn vacancies,Sn@Ti_(2)CTX/Ti_(2)SnC–V,was synthesized by controlled etching Sn@Ti_(2)SnC MAX phase and demonstrated as an efficient electrocatalyst for electrocatalytic N2 reduction.Due to the synergistic effect of MXene/MAX heterostructure,the existence of Sn vacancies and the highly dispersed Sn active sites,the obtained Sn@Ti2CTX/Ti_(2)SnC–V exhibits an optimal NH_(3) yield of 28.4μg h^(−1) mg_(cat)^(−1) with an excellent FE of 15.57% at−0.4 V versus reversible hydrogen electrode in 0.1 M Na_(2)SO_(4),as well as an ultra-long durability.Noticeably,this catalyst represents a satisfactory NH3 yield rate of 10.53μg h^(−1) mg^(−1) in the home-made simulation device,where commercial electrochemical photovoltaic cell was employed as power source,air and ultrapure water as feed stock.The as-proposed strategy represents great potential toward ammonia production in terms of financial cost according to the systematic technical economic analysis.This work is of significance for large-scale green ammonia production.
文摘This study aimed to discriminate ten Cameroonian cocoa hybrids according to their total fat, fatty acid composition, tocopherol and tocotrienol profiles. Six cocoa clones from the gene banks of the Cameroon Cocoa Development Corporation were used to create hybrids. The determination of fatty acid composition was carried out by using a gas chromatography (GC) apparatus coupled by a flame ion detector (FID). Tocopherol and tocotrienol analysis was performed by upper high-performance liquid chromatography (UHPLC). Information on the impact of the genotype on the cocoa fat composition was provided. The major fatty acids (FA) in fermented samples are stearic (34.57%), palmitic (26.13%), oleic (34.13%) and linoleic (3.16%) acids. (35.05% to 35.6%). SCA12 × ICS40, SCA12 × SNK13, SNK13 × T79/501 have the least hard cocoa butters. Tocopherols analysis showed a predominance of γ-tocopherols (94.64 ± 1.51 to 292.16 ± 3.17 µg∙g<sup>−1</sup>), whereas only a small amount of β and δ-tocopherol (from 0.46 to 2.78 µg∙g<sup>−1</sup> and 0.12 to 5.82 respectively) was observed. No γ-tocotrienol was found in fermented samples. A differentiation in terms of total fat and tocopherol content was observed amongst hybrids with the same mother-clone, suggesting an impact of pollen on these compounds.
基金supported by National Natural Science Foundation of China(52103029 and 51903075).
文摘Polyimide(PI)is a promising electronic packaging material,but it remains challenging to obtain an all-organic PI hybrid film with decreased dielectric constant and loss without modifying the monomer.Herein,a series of allorganic PI hybrid films were successfully prepared by introducing the covalent organic framework(COF),which could induce the formation of the cross-linking structure in the PI matrix.Due to the synergistic effects of the COF fillers and the cross-linking structure,the PI/COF hybrid film containing 2 wt%COF exhibited the lowest dielectric constant of 2.72 and the lowest dielectric loss(tanδ)of 0.0077 at 1 MHz.It is attributed to the intrinsic low dielectric constant of COF and a large number of mesopores within the PI.Besides,the cross-linking network of PI prevents the molecular chains from stacking and improves the fraction of free volume(FFV).The molecular dynamics simulation results are well consistent with the dielectric properties data.Furthermore,the PI/COF hybrid film with 5 wt%COF showed a significant enhancement in breakdown strength,which increased to 412.8 kV/mm as compared with pure PI.In addition,the PI/COF hybrid film achieve to reduce the dielectric constant and thermal expansion coefficient(CTE).It also exhibited excellent thermal,hydrophobicity,and mechanical performance.The all-organic PI/COF hybrid films have great commercial potential as next-generation electronic packaging materials.
基金the National Natural Science Foundation of China(32272049,32261143757)Sustainable Development International Cooperation Program from Bill&Melinda Gates Foundation(2022YFAG1002)+2 种基金the National Key Research and Development Program of China(2020YFE0202300)the Agricultural Science&Technology Innovation Program(CAASZDRW202109)the China Scholarship Council.
文摘Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to make 285 single-cross hybrids in a partial-diallel cross design.These lines represented a mini-core collection of Chinese maize germplasm and comprised 18 inbred lines from the Stiff Stalk heterotic group and 16 inbred lines from the Non-Stiff Stalk heterotic group.The parents were genotyped by sequencing and the 285 hybrids were phenotyped for nine yield and yield-related traits at two locations in the summer sowing area(SUS)and three locations in the spring sowing area(SPS)in the main maizeproducing regions of China.Multiple GP models were employed to assess the accuracy of trait prediction in the hybrids.By ten-fold cross-validation,the prediction accuracies of yield performance of the hybrids estimated by the genomic best linear unbiased prediction(GBLUP)model in SUS and SPS were 0.51 and 0.46,respectively.The prediction accuracies of the remaining yield-related traits estimated with GBLUP ranged from 0.49 to 0.86 and from 0.53 to 0.89 in SUS and SPS,respectively.When additive,dominance,epistasis effects,genotype-by-environment interaction,and multi-trait effects were incorporated into the prediction model,the prediction accuracy of hybrid yield performance was improved.The ratio of training to testing population and size of training population optimal for yield prediction were determined.Multiple prediction models can improve prediction accuracy in hybrid breeding.
文摘Chloroplast simple sequence repeat (cpSSR) markers in Citrus were developed and successfully used to analyze chloroplast genome inheritance of Citrus somatic hybrids. Twenty-two previously reported cpSSR primer pairs from pine (Pinus thunbergii Parl.), rice (Otyza sativa L.) and tobacco (Nicotiana tabacum L.) were tested in Citrus, nine of which could amplify intensive PCR products by agarose gel electrophoresis. Chloroplast genome inheritance of Citrus somatic hybrids from nine fusions was then analyzed, and five of the nine pre-screened primer pairs showed polymorphisms by polyacrylamide gel electrophoresis. The results revealed the random inheritance nature of chloroplast genome in all analyzed Citrus somatic hybrids, which was in agreement with previous reports based on RFLP or CAPS analyses. It was also shown that cpSSR is a more efficient tool in chloroplast genome analyses of somatic hybrids in higher plants, compared with the conventional RFLP or CAPS analyses.
基金Supported by National Freshwater Fish Industrial Technology System ProjectKey Discipline Construction Project of Shanghai(Y1101)Key Project of Science Committee in Shanghai(06DJ14003)~~
文摘[ Objective] The aim of this study was to investigate the growth and morphological characteristics of juvenile hybrids of grass carp. [Method] Three inbred generations of YR (Yangtze River stock ♀×Yangtze River stock ♂ ), ZR (Zhujiang River stock ♀ ×Zhujiang River stock♂ ) and hybrids F1 ( Yangtze River stock ♀ × Zhujiang River stock ♂ ) were established, and their growth or morphological data were also measured. [ Result] The orders of body weight, standard length and absolute growth rate were F1 〉 ZR 〉 YR. No significant difference was found in body weight or standard length of 50 day-old generations ( P〉0. 05), while there was an extremely significantly difference in those of 170 day-old generations ( P 〈0.01 ). However, the absolute growth rate of F1 was 20.00% and 50.00% higher than that of ZR and YR respectively, and no significant difference was found between F1 and ZR ( P 〉 0.05), but significant difference between F1 and YR ( P 〈 0.05). F1 showed a significant hybrid vigor with rate of 20.09%. There was no significant difference among three inbred generations in standard length/total length ( P 〉 0.05), while significant difference in head length/total length, body height/standard length and body width/standard length ( P 〈 0.05), which indicated that F1 had the characteristics of shorter head, higher and wider body. [ Conclusion]F1 has advantages in growth performance and morphological characteristics.
基金supported by the National Key Research and Development Program of China (2022YFB4002100)the development project of Zhejiang Province's "Jianbing" and "Lingyan" (2023C01226)+4 种基金the National Natural Science Foundation of China (22278364, U22A20432, 22238008, 22211530045, and 22178308)the Fundamental Research Funds for the Central Universities (226-2022-00044 and 226-2022-00055)the Science Foundation of Donghai Laboratory (DH-2022ZY0009)the Startup Foundation for Hundred-Talent Program of Zhejiang UniversityScientific Research Fund of Zhejiang Provincial Education Department.
文摘Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
基金financially supported by the National Natural Science Foundation of China (Nos.51974023 and52374321)the funding of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,China (No.41620007)。
文摘The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.
基金Supported by Excellent Team Training Program of Yunnan Academy of Agriculture Sciences(YAAS2014YY002)~~
文摘[Objective] This study aimed to screen a set of SSR core primers suitable for purity identification of pepper (Capsicum) hybrids. [Method] DNA fingerprint of 100 pepper hybrids was analyzed using 17 SSR primers. [Result] According to the polymorphism and heterozygosity, Hpms1-214, Es395 and Hpmsl-5 were determined as three preferred core primers for purity identification of pepper hybrids. By using these three preferred core primers, 97 pepper hybrids (accounting for 97%) had heterozygous band pattern with at least one primer. Es330, Es363, Epms923, Es120 and Es64 were determined as candidate core primers for purity identification of pepper hybrids. Specific primers of 14 varieties were obtained, which could be used to further screen parent-complementary primers of each pepper hybrid. [Con- clusion] This study laid the foundation for constructing standard DNA fingerprints for purity identification of pepper hybrids.
基金supported by the National Institute on Aging (NIA)National Institutes of Health (NIH)+3 种基金Nos.K99AG065645,R00AG065645R00AG065645-04S1 (to SK)NIH research grants,NINDS,No.R01 NS115834NINDS/NIA,No.R01 NS115834-02S1 (to LG)。
文摘Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.
基金The research is supported by grant from the National Natural Science Foundation of China.
文摘Protoplasts isolated from cotyledon-derived calli of Actinidia chinensis var. chinensis (2n = 2x=58) were fused by the PEG method with cotyledon-callus protoplasts of A. deliciosa var. deliciosa (2n = 6x = 174) or with mesophyll protoplasts of A. kolomikta (2n = 2x = 58), respectively. Randomly amplified polymorphic DNA (RAPD) markers and flow cytometry was used to confirm the occurrence of somatic hybrids. RAPD results with some primers surveyed indicated that one clone (A. chinensis + A. deliciosa) and four clones (A. chinensis + A. kolomikta) had RAPD banding patterns which combined the parental banding profiles. Ploidy levels of the (A. chinensis + A. deliciosa) clone were deduced as octoploid (2n = 8x), and the (A. chinensis + A. kolomikta) clones were tetraploid (2n = 4x), triploid (2n = 3x) or pentaploid (2n = 5x). The clones were confirmed as interspecific somatic hybrids in Actinidia.
基金supported by the Natural Science Foundation of China(Grant Nos.42088101 and 42205149)Zhongwang WEI was supported by the Natural Science Foundation of China(Grant No.42075158)+1 种基金Wei SHANGGUAN was supported by the Natural Science Foundation of China(Grant No.41975122)Yonggen ZHANG was supported by the National Natural Science Foundation of Tianjin(Grant No.20JCQNJC01660).
文摘Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.
基金The Qian Xuesen Youth Innovation Foundation from China Aerospace Science and Technology Corporation(Grant Number 2022JY51).
文摘The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.
基金Projects(42177164,52474121)supported by the National Science Foundation of ChinaProject(PBSKL2023A12)supported by the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,China。
文摘In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.
基金Supported by Special Basic Research Fund for Central Public Research Institutes(0032011018)~~
文摘To understand the inter-hybridization between Cucumis ssp.plants,we used 150 melon varieties as female parents to cross with Cucumis metuliferus and Cucumis anguria.Only melon accessions V2 and V129 set fruits,but seeds from fruits V2(V129)×C.metuliferus were abortive.A few of seeds from the bottom of fruit V2(V129)×C.anguria were fertile.Sequence-related amplified polymorphism(SRAP)molecular markers were used to analyze the progenies of inter-specific hybridization between C.anguria and melon V129.One pair primer(E14/M2)was found effective in amplification on male parent characteristic bands from the hybrids,suggesting that some DNA exchange had happened between C.anguria and melon V129.This study provided data for analyzing the mechanism of inter-hybridization between Cucumis plants.
基金financially supported by the National Natural Science Foundation of China (No.52172218)。
文摘Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.