Designing a high-fidelity cutting device is one of the difficulties in hydrate samples pressure-holding transfer.Due to the limitations of the existing mechanical system,there is much damage to the cut surface of hydr...Designing a high-fidelity cutting device is one of the difficulties in hydrate samples pressure-holding transfer.Due to the limitations of the existing mechanical system,there is much damage to the cut surface of hydrate samples,with many chips produced,which seriously affects the quality of samples.In this paper,a new cutting device utilizes two servo motors to achieve a high degree of automation.Using the Archimedes spiral,it achieves low disturbance of the cut surface and provides accurate control of the process.In addition,due to the operation of the sample long-stroke push unit,cutting hydrate samples of any length with almost no chips within a short cutting time can be achieved.Laboratory and sea tests have achieved all design requirements of the equipment and strongly demonstrate its benefit and stability.It is concluded that this new high-fidelity cutting technology is practically efficient.The physical state of the hydrate can be maintained to the greatest extent,and thus the new equipment provides significant support for the exploration and development of hydrate resources.展开更多
基金This work is supported by the Key R&D Program of Zhejiang Province(No.2021C03183)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0506)the National Natural Science Foundation of China(No.2017YFC0307500).
文摘Designing a high-fidelity cutting device is one of the difficulties in hydrate samples pressure-holding transfer.Due to the limitations of the existing mechanical system,there is much damage to the cut surface of hydrate samples,with many chips produced,which seriously affects the quality of samples.In this paper,a new cutting device utilizes two servo motors to achieve a high degree of automation.Using the Archimedes spiral,it achieves low disturbance of the cut surface and provides accurate control of the process.In addition,due to the operation of the sample long-stroke push unit,cutting hydrate samples of any length with almost no chips within a short cutting time can be achieved.Laboratory and sea tests have achieved all design requirements of the equipment and strongly demonstrate its benefit and stability.It is concluded that this new high-fidelity cutting technology is practically efficient.The physical state of the hydrate can be maintained to the greatest extent,and thus the new equipment provides significant support for the exploration and development of hydrate resources.