Developing efficient water oxidation catalysts(WOCs)with earth‐abundant elements still remains a challenging task for artificial photosynthesis.Iron‐based WOC is a promising candidate because it is economically chea...Developing efficient water oxidation catalysts(WOCs)with earth‐abundant elements still remains a challenging task for artificial photosynthesis.Iron‐based WOC is a promising candidate because it is economically cheap,little toxic and environmentally friendly.In this study,we found that the catalytic water oxidation activity on amorphous iron‐based oxide/hydroxide(FeOx)can be decreased by an order of magnitude after the dehydration process at room temperature.Thermogravimetric analysis,XRD and Raman results indicated that the dehydration process of FeOx at room temperature causes the almost completely loss of water molecule with no bulk structural changes.Based on this finding,we prepared hydrated ultrasmall(ca.2.2 nm)FeOx nanoparticles of amorphous feature,which turns out to be extremely active as WOC with turnover frequency(TOF)up to 9.3 s^-1 in the photocatalytic Ru(bpy)3^2+‐Na2S2O8 system.Our findings suggest that future design of active iron‐based oxides as WOCs requires the consideration of their hydration status.展开更多
According to the processing and interpretation of multichannel seismic reflection data in the area of Okinawa Trough, the BSR (bottom simulating reflector) was identified in 16 seismic profiles. By means of special ...According to the processing and interpretation of multichannel seismic reflection data in the area of Okinawa Trough, the BSR (bottom simulating reflector) was identified in 16 seismic profiles. By means of special processing technologies such as AVO and waveform inversion, the authors, for the first time, directly used the BSR to outline the distribution tendency of thickness of gas hydrate stability zone in the Trough and thought that the largest stability zone thickness was in the south and the smallest in the north. Then through calculation the authors got the thickness of hydrate stability zone and resource of the hydrate. This would be useful to the future hydrate exploration and resource evaluation in the Okinawa Trough.展开更多
Based on the analysis of sea-bottom temperature and geothermal gradient, andby means of the phase boundary curve of gas hydrate and the sea-bottom temperature versus waterdepth curve in the South China Sea, this paper...Based on the analysis of sea-bottom temperature and geothermal gradient, andby means of the phase boundary curve of gas hydrate and the sea-bottom temperature versus waterdepth curve in the South China Sea, this paper studies the temperature and pressure conditions forgas hydrate to keep stable. In a marine environment, methane hydrate keeps stable at water depthsgreater than 550 min the South China Sea. Further, the thickness of the gas hydrate stability zonein the South China Sea was calculated by using the phase boundary curve and temperature-depthequations. The result shows that gas hydrate have a better perspective in the southeast of theDongsha Islands. the northeast of the Xisha Islands and the north of the Nansha Islands for thickerstability zones.展开更多
Using the collected 433 heat flow values, we estimated the bases of methane hydrate stability zone (BHSZ), in northern South China Sea (NSCS). Through comparing BHSZs with the depths of bottom simulating reflecto...Using the collected 433 heat flow values, we estimated the bases of methane hydrate stability zone (BHSZ), in northern South China Sea (NSCS). Through comparing BHSZs with the depths of bottom simulating reflectors (BSRs), in Shenhu Area (SA), we found that there are big differences between them. In the north of SA, where the water depth is shallow, many slumps developed and the sedimentation rate is high, it appears great negative difference (as large as -192%). However, to the southeast of SA, where the water depth is deeper, sedimentation rate is relatively low and uplift basement topography exists, it changes to positive difference (as large as +45%). The differences change so great, which haven't been observed in other places of the world. After considering the errors from the process of heat flow measurement, the BSR depth, the relationship of thermal conductivity with the sediments depth, and the fluid flow activities, we conclude that the difference should be not caused by these errors. Such big disagreement may be due to the misunderstanding of BSR. The deviant "BSRs" could represent the paleo-BSRs or just gas-bearing sediment layers, such as unconformities or the specific strata where have different permeability, which are not hydraterelated BSRs.展开更多
Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteri...Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration.展开更多
1.Objectives The Mohe Basin in Heilongjiang,China has a NEE thrust nappe belt,which was assembled by the root zone,middle thrust zone and thrust front,north-south and north-east normal faults with three tectonic activ...1.Objectives The Mohe Basin in Heilongjiang,China has a NEE thrust nappe belt,which was assembled by the root zone,middle thrust zone and thrust front,north-south and north-east normal faults with three tectonic activities of the Middle Jurassic to. Eocene,the Miocene,and the Early to Middle Pleistocene. The middle thrust zone and thrust front has a large number of folds,thrust faults,fractures and glutenites,which are the major structures of gas hydrate accumulation in the Mohe Basin.展开更多
The exploration of unconventional and/or new energy resources has become the focus of energy research worldwide,given the shortage of fossil fuels.As a potential energy resource,gas hydrate exists only in the environm...The exploration of unconventional and/or new energy resources has become the focus of energy research worldwide,given the shortage of fossil fuels.As a potential energy resource,gas hydrate exists only in the environment of high pressure and low temperature,mainly distributing in the sediments of the seafloor in the continental margins and the permafrost zones in land.The accurate determination of the thickness of gas hydrate stability zone is essential yet challenging in the assessment of the exploitation potential.The majority of previous studies obtain this thickness by detecting the bottom simulating reflectors(BSRs) layer on the seismic profiles.The phase equilibrium between gas hydrate stable state with its temperature and pressure provides an opportunity to derive the thickness with the geothermal method.Based on the latest geothermal dataset,we calculated the thickness of the gas hydrate stability zone(GHSZ) in the north continental margin of the South China Sea.Our results indicate that the thicknesses of gas hydrate stability zone vary greatly in different areas of the northern margin of the South China Sea.The thickness mainly concentrates on 200–300 m and distributes in the southwestern and eastern areas with belt-like shape.We further confirmed a certain relationship between the GHSZ thickness and factors such as heat flow and water depth.The thickness of gas hydrate stability zone is found to be large where the heat flow is relatively low.The GHSZ thickness increases with the increase of the water depth,but it tends to stay steady when the water depth deeper than 3 000 m.The findings would improve the assessment of gas hydrate resource potential in the South China Sea.展开更多
Hydrothermal treatment has been widely applied in the synthesis of well crystalline calcium silicate hydrate(CSH), such as tobermorite and xonotlite. However, both morphology and crystallinity of CSH are greatly aff...Hydrothermal treatment has been widely applied in the synthesis of well crystalline calcium silicate hydrate(CSH), such as tobermorite and xonotlite. However, both morphology and crystallinity of CSH are greatly affected by the conditions of hydrothermal treatment including siliceous materials, temperature increase rate and isothermal periods. In this study, the influence of hydrothermal conditions on the growth of nano-crystalline CSH was investigated based on XRD analysis. Results showed that siliceous materials with amorphous nature(i e, nano silica powder) are beneficial to synthesize pure amorphous CSH, while the use of more crystallized siliceous materials(i e, diatomite and quartz powder) leads to producing crystalline CSH. Results also indicate that the formation of tobermorite and xonotlite is greatly affected by the temperature rise rate during hydrothermal treatment.展开更多
This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of ...This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30-40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.展开更多
Natural gas hydrate(NGH) is one of the important clean energy at present and even in the future. The study of its sedimentary environment and minerogenetic condition has long been a hot issue that has received much co...Natural gas hydrate(NGH) is one of the important clean energy at present and even in the future. The study of its sedimentary environment and minerogenetic condition has long been a hot issue that has received much concern from geologists all over the world. China has successfully obtained the samples of NGH in Shenhu and Dongsha sea areas in 2007, 2013 and 2015, respectively. From this, the continental slope north of the South China Sea becomes an important test site for the study of NGH sedimentary genesis and minerogenetic condition. NGH has been found in Shenhu, Dongsha and Qiongdongnan areas within the continental slope north of South China Sea,at different depths of water, with different sedimentary characteristics, gas genesis, and minerogenetic conditions.Using a seismic sedimentology theory, combining seismic facies results of each facies, sedimentary facies and evolution of each area are documented in turn establishing a sedimentary model by considering palaeogeomorphology, sea level change and tectonic movement. The channel system and MTD(Mass Transport Deposition) system among these three areas were compared focusing on the developing position, appearance and controlling factors. Relative location among three areas is firstly defined that Dongsha area in a nearprovenance steep upper slope, Shenhu area in a normal gentle slope and Qiongdongnan area in an awayprovenance flat plain. Besides, their channel systems are classified into erosional, erosional-aggradational and aggradational channel, and MTD systems into headwall domain, translational domain and toe domain.展开更多
1.ObjectivesSouthern Qinghai-northem Tibet permafrost region is a place having the most widespread and most developed permafrost in China with good mineralization conditions and prospecting potentials for gas hydrate ...1.ObjectivesSouthern Qinghai-northem Tibet permafrost region is a place having the most widespread and most developed permafrost in China with good mineralization conditions and prospecting potentials for gas hydrate (Zhu YH et al.,2011). In 2011,China Geological Survey initiated a special national program entitled "Gas hydrate resource exploration and trial mining",which signaled a prelude to a comprehensive gas hydrate survey in southern Qinghai-northern Tibet permafrost region.So far,appreciable progress has been made in the geological,geophysical,geochemical and drilling survey across a number of key blocks.This paper is intended to examine the fundamental conditions for gas hydrate mineralization based on previous findings,delineate favorable zones for gas hydrate mineralization,and to make contributions to the onshore gas hydrate resource exploration in China.展开更多
The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash(RHA) on cement hydration product phases and interfacial transition zone(ITZ) in mortar were in...The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash(RHA) on cement hydration product phases and interfacial transition zone(ITZ) in mortar were investigated from the nano-scale structure perspective. The experimental results indicate that, with the increase of RHA dosages of samples, the volume fraction of high-density calcium-silicate-hydrate(HD C-S-H) in porosity and hydration product phases increases. The volume fractions of HD C-S-H in C-S-H of samples show an increasing trend with the increase of RHA dosages. RHA decreases the thickness of ITZ and increases the matrix elastic moduli of samples, however, the RHA dosoges hardly affect the thickness and elastic moduli.展开更多
基金supported by the Basic Research Program of China(973 Program,2014CB239403)National Natural Science Foundation of China(21522306,21633009)Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-JSC023)
文摘Developing efficient water oxidation catalysts(WOCs)with earth‐abundant elements still remains a challenging task for artificial photosynthesis.Iron‐based WOC is a promising candidate because it is economically cheap,little toxic and environmentally friendly.In this study,we found that the catalytic water oxidation activity on amorphous iron‐based oxide/hydroxide(FeOx)can be decreased by an order of magnitude after the dehydration process at room temperature.Thermogravimetric analysis,XRD and Raman results indicated that the dehydration process of FeOx at room temperature causes the almost completely loss of water molecule with no bulk structural changes.Based on this finding,we prepared hydrated ultrasmall(ca.2.2 nm)FeOx nanoparticles of amorphous feature,which turns out to be extremely active as WOC with turnover frequency(TOF)up to 9.3 s^-1 in the photocatalytic Ru(bpy)3^2+‐Na2S2O8 system.Our findings suggest that future design of active iron‐based oxides as WOCs requires the consideration of their hydration status.
基金the State Scholarship Fund(No.201709480008)Hunan Province Education Scientific Project(No.19A164)National Undergraduate Research and Creative Experiment Project(No.S202010534006)。
文摘According to the processing and interpretation of multichannel seismic reflection data in the area of Okinawa Trough, the BSR (bottom simulating reflector) was identified in 16 seismic profiles. By means of special processing technologies such as AVO and waveform inversion, the authors, for the first time, directly used the BSR to outline the distribution tendency of thickness of gas hydrate stability zone in the Trough and thought that the largest stability zone thickness was in the south and the smallest in the north. Then through calculation the authors got the thickness of hydrate stability zone and resource of the hydrate. This would be useful to the future hydrate exploration and resource evaluation in the Okinawa Trough.
文摘Based on the analysis of sea-bottom temperature and geothermal gradient, andby means of the phase boundary curve of gas hydrate and the sea-bottom temperature versus waterdepth curve in the South China Sea, this paper studies the temperature and pressure conditions forgas hydrate to keep stable. In a marine environment, methane hydrate keeps stable at water depthsgreater than 550 min the South China Sea. Further, the thickness of the gas hydrate stability zonein the South China Sea was calculated by using the phase boundary curve and temperature-depthequations. The result shows that gas hydrate have a better perspective in the southeast of theDongsha Islands. the northeast of the Xisha Islands and the north of the Nansha Islands for thickerstability zones.
基金The National Natural Science Foundation of China under contract No. 40774033863 Program under contract No. 2006AA09A203-05973 Program under contract No. 2009CB219503
文摘Using the collected 433 heat flow values, we estimated the bases of methane hydrate stability zone (BHSZ), in northern South China Sea (NSCS). Through comparing BHSZs with the depths of bottom simulating reflectors (BSRs), in Shenhu Area (SA), we found that there are big differences between them. In the north of SA, where the water depth is shallow, many slumps developed and the sedimentation rate is high, it appears great negative difference (as large as -192%). However, to the southeast of SA, where the water depth is deeper, sedimentation rate is relatively low and uplift basement topography exists, it changes to positive difference (as large as +45%). The differences change so great, which haven't been observed in other places of the world. After considering the errors from the process of heat flow measurement, the BSR depth, the relationship of thermal conductivity with the sediments depth, and the fluid flow activities, we conclude that the difference should be not caused by these errors. Such big disagreement may be due to the misunderstanding of BSR. The deviant "BSRs" could represent the paleo-BSRs or just gas-bearing sediment layers, such as unconformities or the specific strata where have different permeability, which are not hydraterelated BSRs.
基金funded by the projects initiated by the China Geological Survey(DD20190217 and DD20190230)the key special project for introduced talent team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0102)Guangdong Major project of Basic and Applied Basic Research(2020B0301030003).
文摘Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration.
文摘1.Objectives The Mohe Basin in Heilongjiang,China has a NEE thrust nappe belt,which was assembled by the root zone,middle thrust zone and thrust front,north-south and north-east normal faults with three tectonic activities of the Middle Jurassic to. Eocene,the Miocene,and the Early to Middle Pleistocene. The middle thrust zone and thrust front has a large number of folds,thrust faults,fractures and glutenites,which are the major structures of gas hydrate accumulation in the Mohe Basin.
基金The National Natural Science Foundation of China under contract No.41176037the Ministry of Science and Technology Project under contract No.2016ZX05026-002-007+1 种基金the New Century Excellent Talents Program of MOE under contract No.NCET-12-263Jiangsu Province College Student Scientific Training Program under contract No.XZ1210284007
文摘The exploration of unconventional and/or new energy resources has become the focus of energy research worldwide,given the shortage of fossil fuels.As a potential energy resource,gas hydrate exists only in the environment of high pressure and low temperature,mainly distributing in the sediments of the seafloor in the continental margins and the permafrost zones in land.The accurate determination of the thickness of gas hydrate stability zone is essential yet challenging in the assessment of the exploitation potential.The majority of previous studies obtain this thickness by detecting the bottom simulating reflectors(BSRs) layer on the seismic profiles.The phase equilibrium between gas hydrate stable state with its temperature and pressure provides an opportunity to derive the thickness with the geothermal method.Based on the latest geothermal dataset,we calculated the thickness of the gas hydrate stability zone(GHSZ) in the north continental margin of the South China Sea.Our results indicate that the thicknesses of gas hydrate stability zone vary greatly in different areas of the northern margin of the South China Sea.The thickness mainly concentrates on 200–300 m and distributes in the southwestern and eastern areas with belt-like shape.We further confirmed a certain relationship between the GHSZ thickness and factors such as heat flow and water depth.The thickness of gas hydrate stability zone is found to be large where the heat flow is relatively low.The GHSZ thickness increases with the increase of the water depth,but it tends to stay steady when the water depth deeper than 3 000 m.The findings would improve the assessment of gas hydrate resource potential in the South China Sea.
基金Funded by the Fundamental Research Funds for the Central Universities(No.2018CDXYCL0018)the National Natural Science Foundation of China(NSFC)(No.51678093)the National Youth Fund(No.51402029)
文摘Hydrothermal treatment has been widely applied in the synthesis of well crystalline calcium silicate hydrate(CSH), such as tobermorite and xonotlite. However, both morphology and crystallinity of CSH are greatly affected by the conditions of hydrothermal treatment including siliceous materials, temperature increase rate and isothermal periods. In this study, the influence of hydrothermal conditions on the growth of nano-crystalline CSH was investigated based on XRD analysis. Results showed that siliceous materials with amorphous nature(i e, nano silica powder) are beneficial to synthesize pure amorphous CSH, while the use of more crystallized siliceous materials(i e, diatomite and quartz powder) leads to producing crystalline CSH. Results also indicate that the formation of tobermorite and xonotlite is greatly affected by the temperature rise rate during hydrothermal treatment.
基金supported by State Key Laboratory of Earthquake Dynamics(project No. LED2008A03) Wenchuan Earthquake Fault Scientific Drilling Project(WFSD),by a Grant-in-Aid for JSPS Fellows(No.201007605) to the first author (T.Togo),and by a 2009 Grant-in-Aid of Fukada Geological Institute
文摘This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30-40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.
文摘Natural gas hydrate(NGH) is one of the important clean energy at present and even in the future. The study of its sedimentary environment and minerogenetic condition has long been a hot issue that has received much concern from geologists all over the world. China has successfully obtained the samples of NGH in Shenhu and Dongsha sea areas in 2007, 2013 and 2015, respectively. From this, the continental slope north of the South China Sea becomes an important test site for the study of NGH sedimentary genesis and minerogenetic condition. NGH has been found in Shenhu, Dongsha and Qiongdongnan areas within the continental slope north of South China Sea,at different depths of water, with different sedimentary characteristics, gas genesis, and minerogenetic conditions.Using a seismic sedimentology theory, combining seismic facies results of each facies, sedimentary facies and evolution of each area are documented in turn establishing a sedimentary model by considering palaeogeomorphology, sea level change and tectonic movement. The channel system and MTD(Mass Transport Deposition) system among these three areas were compared focusing on the developing position, appearance and controlling factors. Relative location among three areas is firstly defined that Dongsha area in a nearprovenance steep upper slope, Shenhu area in a normal gentle slope and Qiongdongnan area in an awayprovenance flat plain. Besides, their channel systems are classified into erosional, erosional-aggradational and aggradational channel, and MTD systems into headwall domain, translational domain and toe domain.
文摘1.ObjectivesSouthern Qinghai-northem Tibet permafrost region is a place having the most widespread and most developed permafrost in China with good mineralization conditions and prospecting potentials for gas hydrate (Zhu YH et al.,2011). In 2011,China Geological Survey initiated a special national program entitled "Gas hydrate resource exploration and trial mining",which signaled a prelude to a comprehensive gas hydrate survey in southern Qinghai-northern Tibet permafrost region.So far,appreciable progress has been made in the geological,geophysical,geochemical and drilling survey across a number of key blocks.This paper is intended to examine the fundamental conditions for gas hydrate mineralization based on previous findings,delineate favorable zones for gas hydrate mineralization,and to make contributions to the onshore gas hydrate resource exploration in China.
基金Funded by the National Natural Science Foundation of China(Nos.51602198,41427802 and 41302257)the Zhejiang Provincial Natural Science Foundation of China(No.LQ13D020001)the Shaoxing University Scientific Research Project(No.20145030)
文摘The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash(RHA) on cement hydration product phases and interfacial transition zone(ITZ) in mortar were investigated from the nano-scale structure perspective. The experimental results indicate that, with the increase of RHA dosages of samples, the volume fraction of high-density calcium-silicate-hydrate(HD C-S-H) in porosity and hydration product phases increases. The volume fractions of HD C-S-H in C-S-H of samples show an increasing trend with the increase of RHA dosages. RHA decreases the thickness of ITZ and increases the matrix elastic moduli of samples, however, the RHA dosoges hardly affect the thickness and elastic moduli.