Mineralogical evidence of water–rock interactions is a strong indicator of the presence of liquid water on ancient Mars.Previous observations have found widely distributed hydrated minerals in the southern highlands,...Mineralogical evidence of water–rock interactions is a strong indicator of the presence of liquid water on ancient Mars.Previous observations have found widely distributed hydrated minerals in the southern highlands,whereas such discoveries have been rare in the younger northern lowlands.China’s first Mars exploration mission successfully landed a rover(Zhurong)in southern Utopia Planitia,providing an opportunity to analyze the exposed rocks in the northern lowlands.Using data from the short-wave infrared(SWIR)spectrometer and the laser-induced breakdown spectrometer(LIBS)onboard the Zhurong rover,we found evidence for the widespread presence of hydrated minerals(probably sulfates or silica)around the landing site.The basaltic-like elemental compositions of the targeted samples further indicated that hydrated minerals are likely minor components.The results from Zhurong suggest that active aqueous activities occurred during the overall cold and dry Amazonian era on Mars.However,further evaluations are needed on the duration and scale of these activities.展开更多
Aluminum-oxide-hydroxide (AIOOH) is a clean and non-toxic flame retardant. There have been many trials for the fabrication of ultrafine AIOOH, Two main approaches exist for nano-AlOOH synthesis: reactive precipitat...Aluminum-oxide-hydroxide (AIOOH) is a clean and non-toxic flame retardant. There have been many trials for the fabrication of ultrafine AIOOH, Two main approaches exist for nano-AlOOH synthesis: reactive precipitation and batch hydrothermal synthesis, Both approaches are laborious and time consuming with poor control of particle morphology. We report on the novel continuous flow manufacture of AIOOH nanorods with controlled morphology (particle size and shape) by hydrothermal synthesis. AIOOH was harvested from its mother liquor (colloidal solution) using poly(acrylamide-co-acrylic acid) copolymer as a flocculating agent. The developed AIOOH shape and size, crystalline phase, thermal stability, and endothermic heat sink action were investigated by transmission electron microscopy, X-ray diffractome- try, thermogravimetric analysis, and differential scanning calorimetry, respectively. The phase transition of AlOOH to Al2O3 was demonstrated by conducting different X-ray diffractometry scans from 400 to 700℃. These results may provide an option for the continuous synthesis of nano-AIOOH as a clean and non-toxic flame retardant with excellent thermal stability. Consequently, enhanced flammability properties can be achieved at low solids loading.展开更多
基金funded by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB41000000)the National Natural Science Foundation of China (Grant No. 41930216)+1 种基金the Pre-research Project on Civil Aerospace Technologies (Grant No. D020202) of the Chinese National Space Administrationthe Fundamental Research Funds for the Central Universities of China (Grant No. WK3410000019)。
文摘Mineralogical evidence of water–rock interactions is a strong indicator of the presence of liquid water on ancient Mars.Previous observations have found widely distributed hydrated minerals in the southern highlands,whereas such discoveries have been rare in the younger northern lowlands.China’s first Mars exploration mission successfully landed a rover(Zhurong)in southern Utopia Planitia,providing an opportunity to analyze the exposed rocks in the northern lowlands.Using data from the short-wave infrared(SWIR)spectrometer and the laser-induced breakdown spectrometer(LIBS)onboard the Zhurong rover,we found evidence for the widespread presence of hydrated minerals(probably sulfates or silica)around the landing site.The basaltic-like elemental compositions of the targeted samples further indicated that hydrated minerals are likely minor components.The results from Zhurong suggest that active aqueous activities occurred during the overall cold and dry Amazonian era on Mars.However,further evaluations are needed on the duration and scale of these activities.
基金Financial support of the research project entitled "Enhanced Flame Retardant Polymer Nanocomposites" has been provided by Military Technical College,Cairo,Egypt
文摘Aluminum-oxide-hydroxide (AIOOH) is a clean and non-toxic flame retardant. There have been many trials for the fabrication of ultrafine AIOOH, Two main approaches exist for nano-AlOOH synthesis: reactive precipitation and batch hydrothermal synthesis, Both approaches are laborious and time consuming with poor control of particle morphology. We report on the novel continuous flow manufacture of AIOOH nanorods with controlled morphology (particle size and shape) by hydrothermal synthesis. AIOOH was harvested from its mother liquor (colloidal solution) using poly(acrylamide-co-acrylic acid) copolymer as a flocculating agent. The developed AIOOH shape and size, crystalline phase, thermal stability, and endothermic heat sink action were investigated by transmission electron microscopy, X-ray diffractome- try, thermogravimetric analysis, and differential scanning calorimetry, respectively. The phase transition of AlOOH to Al2O3 was demonstrated by conducting different X-ray diffractometry scans from 400 to 700℃. These results may provide an option for the continuous synthesis of nano-AIOOH as a clean and non-toxic flame retardant with excellent thermal stability. Consequently, enhanced flammability properties can be achieved at low solids loading.