We experimentally studied the interaction between pozzolanic material(fly ash) and dehydrated autoclaved aerated concrete(DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles fi ner ...We experimentally studied the interaction between pozzolanic material(fly ash) and dehydrated autoclaved aerated concrete(DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles fi ner than 75μm and was then heated to temperatures up to 900 ℃. New cementitious material was prepared by proportioning fly ash and DAAC, named as AF. X-ray diffraction(XRD) was employed to identify the crystalline phases of DAAC before and after rehydration. The hydration process of AF was analyzed by the heat of hydration and non-evaporable water content(Wn). The experimental results show that the highest reactivity of DAAC can be obtained by calcining the powder at 700 ℃ and the dehydrated products are mainly β-C2 S and CaO. The cumulative heat of hydration and Wn was found to be strongly dependent on the replacement level of fl y ash, increasing the replacement level of fl y ash lowered them in AF. The strength contribution rates on pozzolanic effect of fl y ash in AF are always negative, showing a contrary tendency of that of cement-fl y ash system.展开更多
Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetime...Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.展开更多
The distribution of water channels in the crystal morphology of type-α hemi-hydrated gypsum(α-HH) was theoretically detected to investigate the effect of water channels on the hydration reactivity of hemi-hydrate ph...The distribution of water channels in the crystal morphology of type-α hemi-hydrated gypsum(α-HH) was theoretically detected to investigate the effect of water channels on the hydration reactivity of hemi-hydrate phosphogypsum(HPG). Results showed that water channels were mainly distributed in the cylinders of α-HH crystal,whereas no water channel existed in the conical surfaces parallel to the z-axis. Increasing the number of water channels was critical to enhance the hydration activity of HPG compared with the hydration reactivity of industrial HPG and type-α high-strength gypsum. Controlling the technological parameters of crystallization by concentration of liquid-phase SO_4^(2-) made it possible to obtain HPG which had the stumpy crystals of α-HH and high hydration reactivity.展开更多
This article contributes to a meaningful interpretation of results gathered by in-situ measurements of sonic velocity, electrical conductivity and the change of temperature during setting and curing of LC refractory c...This article contributes to a meaningful interpretation of results gathered by in-situ measurements of sonic velocity, electrical conductivity and the change of temperature during setting and curing of LC refractory castables. All said monitoring techniques are well known in the refractory community and are well documented in the literature. However, the time dependent changes of the said properties are not well correlated to mineralogical and in consequence technological changes of the material during setting and curing. The basic interest of refractory users of course is to define the time at which the installation or the pre-shape construction element can be demoulded. This is in principle possible with the methods listed above. However, after water addition the time de- pendent changes of sonic velocity, electrical conductivity and temperature are diverse as there are possible combi- nations of cements, microfines and surface-active additives. In further the ambient conditions, temperature and relative humidity have a strong influence on these properties and this does not only mean a simple time-shift. Up to now the results are more confusing than helpful to determine the best time for demoulding pre-shapes and refractory linings. Recent research at Koblenz University of Applied Science contributes to a deeper understanding of the setting behaviour, because besides the physical evolution of the said parameters the time dependent formation of hydrate phases is also investigated by means of gravi-metric method. The proposed presentation will show detailed insights in the evolution of refractory castables during setting and curing.展开更多
Molecular dynamics simulations have been used to investigate the confinement packing characteristics of small hydrophilic (N-acetyl-glycine-methylamide, Nagma) and hydrophobic (N-acetyl-leucine-methylamide, Nalma)...Molecular dynamics simulations have been used to investigate the confinement packing characteristics of small hydrophilic (N-acetyl-glycine-methylamide, Nagma) and hydrophobic (N-acetyl-leucine-methylamide, Nalma) biomolecules in large diameter single-wall carbon nanotubes (SWCNTs). We find that hydrophilic biomolecules easily fill the nanotube and self organize into a geometrical configuration which reminds the water structural organization under SWCNT confinement. The packing of hydrophilic biomolecules inside the cylinder confines all water molecules in its core, which enhances their mobility. Conversely, hydrophobic biomolecules accommodate into the nanotubes with a trend for homogeneous filling, which generate unstable small pockets of water and drive toward a state of dehydration. These results shed light on key parameters important for the encapsulation of biomolecules with direct relevance for long-term storage and prevention of degradation.展开更多
We study the dynanfics of the first hydration shell of lysozyme to determine the role of hydra- tion water that accompanies lysozyme thermal denaturation. We use nuclear magnetic resonance spectroscopy to investigate ...We study the dynanfics of the first hydration shell of lysozyme to determine the role of hydra- tion water that accompanies lysozyme thermal denaturation. We use nuclear magnetic resonance spectroscopy to investigate both the translational and rotational contributions. Data on proton self-diffusion and reorentational correlation time indicate that the kinetics of the lysozyme fold- ing/unfolding process is controlled by the dynamics of the water molecules in the first hydration shell. When the hydration water dynamics change, because of the weakening of the hydrogen bond network, the three-dimensional structure of the lysozyme is lost and denaturation is triggered. Our data indicates that at temperatures above approximately 315 K, water behaves as a simple liquid and is no longer a good solvent.展开更多
The aim of this paper is to discuss the relationship between the dynamics and thermodynamics of water in the supercooled region. Reviewed case studies comprehend bulk water simulated with the SPC/E, TIP4P and TIP4P/20...The aim of this paper is to discuss the relationship between the dynamics and thermodynamics of water in the supercooled region. Reviewed case studies comprehend bulk water simulated with the SPC/E, TIP4P and TIP4P/2005 potentials, water at protein interfaces, and water in solution with electrolytes. Upon supercooling, the fragile to strong crossover in the s-relaxation of water is found to occur when the Widom line emanating from the liquid-liquid critical point is crossed. This appears to be a general characteristic of supercooled water, not depending on the applied interaction potential and/or different local environments.展开更多
The dynamic or glass transition in biomolecules is important to their functioning. Also essential is the transition between the protein native state and the unfolding process. To better understand these transitions, w...The dynamic or glass transition in biomolecules is important to their functioning. Also essential is the transition between the protein native state and the unfolding process. To better understand these transitions, we use Fourier transform infrared spectroscopy to study the vibrational bending and stretching modes of hydrated lysozymes across a wide temperature range. We find that these transitions are triggered by the strong hydrogen bond coupling between the protein and hydration water. More precisely, we demonstrate that in both cases the water properties dominate the evolution of the system. We find that two characteristic temperatures are relevant: in the supercooled regime of confined water, the fragile-to-strong dynamic transition occurs at TL, and in the stable liquid phase, T* 315 ± 5 K characterizes the behavior of both isothermal compressibility KT(T, P) and the coefficient of thermal expansion ap(T, P).展开更多
Magnesium and rare earth mixed oxides(Mg3 REOx(RE=La, Y. Ce)) were prepared and characterized by Xray diffraction(XRD), N_2 adsorption-desorption, infrared spectra and microcalorimetry of CO_2. The results revea...Magnesium and rare earth mixed oxides(Mg3 REOx(RE=La, Y. Ce)) were prepared and characterized by Xray diffraction(XRD), N_2 adsorption-desorption, infrared spectra and microcalorimetry of CO_2. The results reveal that the Mg_3 CeO_x catalyst is present in the form of Mg-Ce-O solid solution,while the Mg3 LaOx and Mg_3 YO_x catalysts are probably rare earth oxides dispersed on MgO surface. As a result, among the calcined Mg_3 REO_x catalysts, the Mg_3 CeO_x catalyst presents the highest rate constant for acetone aldolization, which is well correlated to its more homogeneous distribution of basic sites. In contrary, the Mg_3 YO_x catalyst exhibit the lowest catalytic activity for acetone aldolization. Upon hydration pre-treatment, the basic properties on the surface of the Mg_3 REO_x catalysts were changed markedly. The Mg_3 YO_x catalyst after hydration treatment shows the highest amount of basic sites on catalyst surface, and then exhibits the highest activity among the hydrated Mg_3 REO_x catalysts. These results make it possible to fine-tune basic sites for acetone aldolization.展开更多
基金Funded by the"863"National High-tech Research and Development Program of China(No.2012AA06A112)
文摘We experimentally studied the interaction between pozzolanic material(fly ash) and dehydrated autoclaved aerated concrete(DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles fi ner than 75μm and was then heated to temperatures up to 900 ℃. New cementitious material was prepared by proportioning fly ash and DAAC, named as AF. X-ray diffraction(XRD) was employed to identify the crystalline phases of DAAC before and after rehydration. The hydration process of AF was analyzed by the heat of hydration and non-evaporable water content(Wn). The experimental results show that the highest reactivity of DAAC can be obtained by calcining the powder at 700 ℃ and the dehydrated products are mainly β-C2 S and CaO. The cumulative heat of hydration and Wn was found to be strongly dependent on the replacement level of fl y ash, increasing the replacement level of fl y ash lowered them in AF. The strength contribution rates on pozzolanic effect of fl y ash in AF are always negative, showing a contrary tendency of that of cement-fl y ash system.
基金supported by the National Natural Science Foundation of China(Grant No.40102005 and No.49725205).
文摘Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.
基金Supported by the Guizhou Province Fund Project(2014)7618
文摘The distribution of water channels in the crystal morphology of type-α hemi-hydrated gypsum(α-HH) was theoretically detected to investigate the effect of water channels on the hydration reactivity of hemi-hydrate phosphogypsum(HPG). Results showed that water channels were mainly distributed in the cylinders of α-HH crystal,whereas no water channel existed in the conical surfaces parallel to the z-axis. Increasing the number of water channels was critical to enhance the hydration activity of HPG compared with the hydration reactivity of industrial HPG and type-α high-strength gypsum. Controlling the technological parameters of crystallization by concentration of liquid-phase SO_4^(2-) made it possible to obtain HPG which had the stumpy crystals of α-HH and high hydration reactivity.
基金German Federation of Industrial Research Associations ( AiF) for its financial support of the research project IGF-No.119 ENcarried out under the auspices of Ai F and financed within the budget of the Federal Ministry of Economics and Technology ( BMWi) through the program to promote collective industrial research (IGF)
文摘This article contributes to a meaningful interpretation of results gathered by in-situ measurements of sonic velocity, electrical conductivity and the change of temperature during setting and curing of LC refractory castables. All said monitoring techniques are well known in the refractory community and are well documented in the literature. However, the time dependent changes of the said properties are not well correlated to mineralogical and in consequence technological changes of the material during setting and curing. The basic interest of refractory users of course is to define the time at which the installation or the pre-shape construction element can be demoulded. This is in principle possible with the methods listed above. However, after water addition the time de- pendent changes of sonic velocity, electrical conductivity and temperature are diverse as there are possible combi- nations of cements, microfines and surface-active additives. In further the ambient conditions, temperature and relative humidity have a strong influence on these properties and this does not only mean a simple time-shift. Up to now the results are more confusing than helpful to determine the best time for demoulding pre-shapes and refractory linings. Recent research at Koblenz University of Applied Science contributes to a deeper understanding of the setting behaviour, because besides the physical evolution of the said parameters the time dependent formation of hydrate phases is also investigated by means of gravi-metric method. The proposed presentation will show detailed insights in the evolution of refractory castables during setting and curing.
文摘Molecular dynamics simulations have been used to investigate the confinement packing characteristics of small hydrophilic (N-acetyl-glycine-methylamide, Nagma) and hydrophobic (N-acetyl-leucine-methylamide, Nalma) biomolecules in large diameter single-wall carbon nanotubes (SWCNTs). We find that hydrophilic biomolecules easily fill the nanotube and self organize into a geometrical configuration which reminds the water structural organization under SWCNT confinement. The packing of hydrophilic biomolecules inside the cylinder confines all water molecules in its core, which enhances their mobility. Conversely, hydrophobic biomolecules accommodate into the nanotubes with a trend for homogeneous filling, which generate unstable small pockets of water and drive toward a state of dehydration. These results shed light on key parameters important for the encapsulation of biomolecules with direct relevance for long-term storage and prevention of degradation.
文摘We study the dynanfics of the first hydration shell of lysozyme to determine the role of hydra- tion water that accompanies lysozyme thermal denaturation. We use nuclear magnetic resonance spectroscopy to investigate both the translational and rotational contributions. Data on proton self-diffusion and reorentational correlation time indicate that the kinetics of the lysozyme fold- ing/unfolding process is controlled by the dynamics of the water molecules in the first hydration shell. When the hydration water dynamics change, because of the weakening of the hydrogen bond network, the three-dimensional structure of the lysozyme is lost and denaturation is triggered. Our data indicates that at temperatures above approximately 315 K, water behaves as a simple liquid and is no longer a good solvent.
文摘The aim of this paper is to discuss the relationship between the dynamics and thermodynamics of water in the supercooled region. Reviewed case studies comprehend bulk water simulated with the SPC/E, TIP4P and TIP4P/2005 potentials, water at protein interfaces, and water in solution with electrolytes. Upon supercooling, the fragile to strong crossover in the s-relaxation of water is found to occur when the Widom line emanating from the liquid-liquid critical point is crossed. This appears to be a general characteristic of supercooled water, not depending on the applied interaction potential and/or different local environments.
文摘The dynamic or glass transition in biomolecules is important to their functioning. Also essential is the transition between the protein native state and the unfolding process. To better understand these transitions, we use Fourier transform infrared spectroscopy to study the vibrational bending and stretching modes of hydrated lysozymes across a wide temperature range. We find that these transitions are triggered by the strong hydrogen bond coupling between the protein and hydration water. More precisely, we demonstrate that in both cases the water properties dominate the evolution of the system. We find that two characteristic temperatures are relevant: in the supercooled regime of confined water, the fragile-to-strong dynamic transition occurs at TL, and in the stable liquid phase, T* 315 ± 5 K characterizes the behavior of both isothermal compressibility KT(T, P) and the coefficient of thermal expansion ap(T, P).
基金Project supported by National Basic Research Program of China(2010CB732300)111 Project(B08021)China Scholarship Council for the Joint-Training Scholarship Program with Institut de Recherches sur la Catalyse et l'Environnement de Lyon(IRCELYON)and Universite Claude Bernard Lyon 1(UCBL1)
文摘Magnesium and rare earth mixed oxides(Mg3 REOx(RE=La, Y. Ce)) were prepared and characterized by Xray diffraction(XRD), N_2 adsorption-desorption, infrared spectra and microcalorimetry of CO_2. The results reveal that the Mg_3 CeO_x catalyst is present in the form of Mg-Ce-O solid solution,while the Mg3 LaOx and Mg_3 YO_x catalysts are probably rare earth oxides dispersed on MgO surface. As a result, among the calcined Mg_3 REO_x catalysts, the Mg_3 CeO_x catalyst presents the highest rate constant for acetone aldolization, which is well correlated to its more homogeneous distribution of basic sites. In contrary, the Mg_3 YO_x catalyst exhibit the lowest catalytic activity for acetone aldolization. Upon hydration pre-treatment, the basic properties on the surface of the Mg_3 REO_x catalysts were changed markedly. The Mg_3 YO_x catalyst after hydration treatment shows the highest amount of basic sites on catalyst surface, and then exhibits the highest activity among the hydrated Mg_3 REO_x catalysts. These results make it possible to fine-tune basic sites for acetone aldolization.