Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures l...Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures less than 373 K might be at least one of minimum roles for the current generations. Then, piezoelectric power harvesting process for recovering low-temperature heats was invented by using a unique biphasic operating medium of an underlying water-insoluble/low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) in small quantity and upper-layered water in large quantity. The higher piezoelectric power harvesting densities were naturally revealed with an increase in heating temperatures. Excessive cooling of the operating medium deteriorated the power harvesting efficiency. The denser operating medium was surpassingly helpful to the higher piezoelectric power harvesting density. Concretely, only about 5% density increase of main operating medium (i.e. water with dissolving alum at 0.10 mol/dm3) came to the champion piezoelectric power harvesting density of 92.6 pW/dm2 in this study, which was about 1.4 times compared to that with the original biphasic medium of pure water together with a small quantity of NOVEC.展开更多
Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoel...Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoelectric conversion element), because the initial investment is large. The final purpose of this research is development of the low temperature difference drive engine supposing use in a hot-springs resort as a power source for electric power generation. In order that a traveler may look at and delight a motion of an engine, it is made to drive at low-speed number of rotations. An engine cycle of this study is aimed at the development of Stirling cycle engine which can maintain high efficiency in small size. This kind of engine has simple structure;it brings low cost, and it is easy to perform maintenance. However, it is difficult to obtain enough output by this type of engine, because of its low temperature difference. This paper deals with the heat transfer characteristic that the working fluid including a phase change material flows into the heating surface from the narrow path. In order to increase the amount of the heat transmission, Diethylether is added to the working fluid. Diethylether is selected as a phase change material (PCM) that has the boiling point which exists between the heat source of high temperature and low temperature. The parameters of the experiment are additive amount of PCM, rotational speed of the displacer piston and temperature of heat transfer surface. It is shown that it is possible to make exchange of heat amount increase by adding phase change material. The result of this research shows the optimal condition of the difference in temperature in heat processing, number of revolutions, and addition concentration of PCM.展开更多
In this paper, the research was focused on optimizing low-temperature heat recovery to adopt multi-effect distil- lation (MED) in desalination by pinch technology. And further analysis indicated that phase changes o...In this paper, the research was focused on optimizing low-temperature heat recovery to adopt multi-effect distil- lation (MED) in desalination by pinch technology. And further analysis indicated that phase changes occurred during the heat recovery process. In such case, the feed stream was divided into two streams: the liquid feed stream and the gaseous feed stream. Through calculation, the optimal ATmin was established at 26℃, and the total cost of heat exchange process was only $1.098× 106. By using the Problem Table Algorithm for pinch analysis, the temperature of the hot and the cold steams was 119℃ and 93 ℃, respectively. At a temperature higher than 119 ℃, all heat of the hot stream could not be cooled by the condenser, and the minimum heat load of utility (QH.min) was 440457.64 kW; and at a temperature below 93 ℃, all heat of the cold stream could not be provided by the heater, and the minimum cold load of utility (QC.min) was 1965993.85 kW. Finally, the synthesis of heat exchanger network was established through integrating two heat exchanger networks.展开更多
Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temp...Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.展开更多
A new crystalline complex (C8H17NH3)2CdCI4(s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction. The crystal structure and composition of the complex are determined by single crystal X-ray diffr...A new crystalline complex (C8H17NH3)2CdCI4(s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction. The crystal structure and composition of the complex are determined by single crystal X-ray diffraction, chemical analysis, and elementary analysis. It is triclinic, the space group is P-1 and Z = 2. The lattice potential energy of the title complex is calculated to be UpoT (CsCd(s))=978.83 kJ.mol^-1 from crystallographic data. Low-temperature heat capacities of the complex are measured by using a precision automatic adiabatic calorimeter over a temperature range from 78 K to 384 K. The temperature, molar enthalpy, and entropy of the phase transition for the complex are determined to be 307.3±0.15 K, 10.15±0.23 kJ.mol^-1, and 33.054-0.78 J.K^-1.mol^-1 respectively for the endothermic peak. Two polynomial equations of the heat capacities each as a function of temperature are fitted by using the leastsquare method. Smoothed heat capacity and thermodynamic functions of the complex are calculated based on the fitted polynomials.展开更多
Phase change materials(PCMs)have remarkable energy storage capacity and promising applications in the field of thermal control of electronic products.The problem of thermal property improvement and heat transfer of PC...Phase change materials(PCMs)have remarkable energy storage capacity and promising applications in the field of thermal control of electronic products.The problem of thermal property improvement and heat transfer of PCMs in metal-foam heatsinks is an important task for thermal management of electronic components.Mixed paraffin samples were prepared by mixing appropriate proportions of paraffin(mass)at various temperatures.Differential scanning calorimetry analysis revealed that the maximum enthalpy of 206.3 J/g is obtained by mixing 20%of 17°C liquid paraffin and 80%of 29℃ solid paraffin.Heating and cooling cycling tests revealed that mixed paraffin exhibits excellent thermal stability and that the regulation method marginally affects thermal stability.Moreover,composites were prepared by embedding PCM into a copper foam by melt impregnation.The thermal conductivity of the composites increased to 4.35 W/(m K),corresponding to 20 times its original value.In addition,density functional theory and experimental results were in good agreement,indicating that the regulation method is practical and effective.展开更多
A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to ...A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to form a plug or two plugs at a position upstream and downstream from a location where work a modification or a repair must be executed.Based on the variable separation method,the present model aims to solve the related coupled heat conduction and moving-boundary phase change problem.An experiment with a 219 mm long pipe,where water was taken as the plugging agent,is presented to demonstrate the relevance and reliability of the proposed model(results show that the error is within 18%).Thereafter,the model is applied to predict the cooling and freezing process of pipelines with different inner diameters at different liquid nitrogen refrigeration temperatures when water is used as the plugging agent.展开更多
文摘Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures less than 373 K might be at least one of minimum roles for the current generations. Then, piezoelectric power harvesting process for recovering low-temperature heats was invented by using a unique biphasic operating medium of an underlying water-insoluble/low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) in small quantity and upper-layered water in large quantity. The higher piezoelectric power harvesting densities were naturally revealed with an increase in heating temperatures. Excessive cooling of the operating medium deteriorated the power harvesting efficiency. The denser operating medium was surpassingly helpful to the higher piezoelectric power harvesting density. Concretely, only about 5% density increase of main operating medium (i.e. water with dissolving alum at 0.10 mol/dm3) came to the champion piezoelectric power harvesting density of 92.6 pW/dm2 in this study, which was about 1.4 times compared to that with the original biphasic medium of pure water together with a small quantity of NOVEC.
文摘Use of the low temperature (less than 100°C) energy contributes to effective use of heat resources. The cost recovery by power generation is difficult by using an existing system (the binary cycle or the thermoelectric conversion element), because the initial investment is large. The final purpose of this research is development of the low temperature difference drive engine supposing use in a hot-springs resort as a power source for electric power generation. In order that a traveler may look at and delight a motion of an engine, it is made to drive at low-speed number of rotations. An engine cycle of this study is aimed at the development of Stirling cycle engine which can maintain high efficiency in small size. This kind of engine has simple structure;it brings low cost, and it is easy to perform maintenance. However, it is difficult to obtain enough output by this type of engine, because of its low temperature difference. This paper deals with the heat transfer characteristic that the working fluid including a phase change material flows into the heating surface from the narrow path. In order to increase the amount of the heat transmission, Diethylether is added to the working fluid. Diethylether is selected as a phase change material (PCM) that has the boiling point which exists between the heat source of high temperature and low temperature. The parameters of the experiment are additive amount of PCM, rotational speed of the displacer piston and temperature of heat transfer surface. It is shown that it is possible to make exchange of heat amount increase by adding phase change material. The result of this research shows the optimal condition of the difference in temperature in heat processing, number of revolutions, and addition concentration of PCM.
基金the National Nature Science Foundation (Grant No. 51178463)
文摘In this paper, the research was focused on optimizing low-temperature heat recovery to adopt multi-effect distil- lation (MED) in desalination by pinch technology. And further analysis indicated that phase changes occurred during the heat recovery process. In such case, the feed stream was divided into two streams: the liquid feed stream and the gaseous feed stream. Through calculation, the optimal ATmin was established at 26℃, and the total cost of heat exchange process was only $1.098× 106. By using the Problem Table Algorithm for pinch analysis, the temperature of the hot and the cold steams was 119℃ and 93 ℃, respectively. At a temperature higher than 119 ℃, all heat of the hot stream could not be cooled by the condenser, and the minimum heat load of utility (QH.min) was 440457.64 kW; and at a temperature below 93 ℃, all heat of the cold stream could not be provided by the heater, and the minimum cold load of utility (QC.min) was 1965993.85 kW. Finally, the synthesis of heat exchanger network was established through integrating two heat exchanger networks.
文摘Lower temperature waste heats less than 373 K have strong potentials to supply additional energies because of their enormous quantities and ubiquity. Accordingly, reinforcement of power generations harvesting low temperature heats is one of the urgent tasks for the current generation in order to accomplish energy sustainability in the coming decades. In this study, a liquid turbine power generator driven by lower temperature heats below 373 K was proposed in the aim of expanding selectable options for harvesting low temperature waste heats less than 373 K. The proposing system was so simply that it was mainly composed of a liquid turbine, a liquid container with a biphasic medium of water and an underlying water-insoluble low-boiling-point medium in a liquid phase, a heating section for vaporization of the liquid and a cooling section for entropy discharge outside the system. Assumed power generating steps via the proposing liquid turbine power generator were as follows: step 1: the underlying low-boiling-point medium in a liquid phase was vaporized, step 2: the surfacing vapor bubbles of low-boiling-point medium accompanied the biphasic medium in their wakes, step 3: such high momentum flux by step 2 rotated the liquid turbine (i.e. power generation), step 4: the surfacing low-boiling-point medium vapor was gradually condensed into droplets, step 5: the low-boiling-point medium droplets were submerged to the underlying medium in a liquid phase. Experiments with a prototype liquid turbine power generator proved power generations in accordance with the assumed steps at a little higher than ordinary temperature. Increasing output voltage could be obtained with an increase in the cooling temperature among tested ranging from 294 to 296 K in contrast to normal thermal engines. Further improvements of the direct current voltage from the proposing liquid turbine power generator can be expected by means of far more vigorous multiphase flow induced by adding solid powders and theoretical optimizations of heat and mass transfers.
基金Project supported by the National Natural Science Foundations of China (Grant Nos. 20673050 and 20973089)
文摘A new crystalline complex (C8H17NH3)2CdCI4(s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction. The crystal structure and composition of the complex are determined by single crystal X-ray diffraction, chemical analysis, and elementary analysis. It is triclinic, the space group is P-1 and Z = 2. The lattice potential energy of the title complex is calculated to be UpoT (CsCd(s))=978.83 kJ.mol^-1 from crystallographic data. Low-temperature heat capacities of the complex are measured by using a precision automatic adiabatic calorimeter over a temperature range from 78 K to 384 K. The temperature, molar enthalpy, and entropy of the phase transition for the complex are determined to be 307.3±0.15 K, 10.15±0.23 kJ.mol^-1, and 33.054-0.78 J.K^-1.mol^-1 respectively for the endothermic peak. Two polynomial equations of the heat capacities each as a function of temperature are fitted by using the leastsquare method. Smoothed heat capacity and thermodynamic functions of the complex are calculated based on the fitted polynomials.
基金supported by the National Natural Science Foundation of China(Grant No.51976126)the Natural Science Foundation of Shanghai(Grant Nos.22ZR1442700,22WZ2503100,and 20ZR1438600)Shanghai Municipal Science and Technology Committee of Shanghai Outstanding Academic Leaders Plan(Grant No.21XD1402400)。
文摘Phase change materials(PCMs)have remarkable energy storage capacity and promising applications in the field of thermal control of electronic products.The problem of thermal property improvement and heat transfer of PCMs in metal-foam heatsinks is an important task for thermal management of electronic components.Mixed paraffin samples were prepared by mixing appropriate proportions of paraffin(mass)at various temperatures.Differential scanning calorimetry analysis revealed that the maximum enthalpy of 206.3 J/g is obtained by mixing 20%of 17°C liquid paraffin and 80%of 29℃ solid paraffin.Heating and cooling cycling tests revealed that mixed paraffin exhibits excellent thermal stability and that the regulation method marginally affects thermal stability.Moreover,composites were prepared by embedding PCM into a copper foam by melt impregnation.The thermal conductivity of the composites increased to 4.35 W/(m K),corresponding to 20 times its original value.In addition,density functional theory and experimental results were in good agreement,indicating that the regulation method is practical and effective.
文摘A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to form a plug or two plugs at a position upstream and downstream from a location where work a modification or a repair must be executed.Based on the variable separation method,the present model aims to solve the related coupled heat conduction and moving-boundary phase change problem.An experiment with a 219 mm long pipe,where water was taken as the plugging agent,is presented to demonstrate the relevance and reliability of the proposed model(results show that the error is within 18%).Thereafter,the model is applied to predict the cooling and freezing process of pipelines with different inner diameters at different liquid nitrogen refrigeration temperatures when water is used as the plugging agent.