The feasibility of utilizing molybdenum tailing and diatomite as siliceous materials to prepare calcium silicate board was explored.The influences of molybdenum tailing/diatomite proportion on hydration characteristic...The feasibility of utilizing molybdenum tailing and diatomite as siliceous materials to prepare calcium silicate board was explored.The influences of molybdenum tailing/diatomite proportion on hydration characteristics,thermal conductivity,water absorption,flexural strength and moisture adsorption-desorption property of calcium silicate board were investigated in detail.The experimental results reveal that molybdenum tailing is environmentally friendly to prepare building materials.The main hydration products in calcium silicate board under autoclaved condition are C-S-H with low crystallinity and tobermorite.Molybdenum tailing is favorable to the formation of tobermorite.The flexural strength and bulk density of the calcium silicate board gradually increase when the content of molybdenum tailing increases.Netlike C-S-H is formed with the increase of diatomite content during autoclaved curing process,resulting in the enhancement of moisture adsorptiondesorption performance and the reduction of thermal conductivity.The optimal content of molybdenum tailing is 20%,furthermore,the flexual strength and thermal conductivity of calcium silicate board at this content meet the Chinese standard JC/T564.1-2008.展开更多
Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hyd...Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.展开更多
We herein evaluate the use of a chemical heat pump (CHP) for upgrading waste heat. CaCl<sub>2</sub> was used in the system of CHP. We evaluated the heat storage and heat releasing of CHP, and confirmed the...We herein evaluate the use of a chemical heat pump (CHP) for upgrading waste heat. CaCl<sub>2</sub> was used in the system of CHP. We evaluated the heat storage and heat releasing of CHP, and confirmed the practicality from the experimental results. The reactor module employed was an aluminum plate-tube heat exchanger with corrugated fins, and the CaCl<sub>2</sub> powder was in the form of a packed bed. Heat storage operation and heat dissipation operation are performed at the same time and supplied to the heat demand destination. At this time, an environmental heat source can be used during the heat radiation operation, and the heat output can release more heat than the heat input during heat storage. The heat discharging and charging characteristics of the reactor module were evaluated experimentally. The coefficient of performance (COP) was calculated for the heat upgrading cycle, and the heat output in the system was determined. A COP of 1.42 and output of 650 W/L, based on the heat exchanger volume, were obtained using a 600 s change time for the heat pump.展开更多
Graphene oxide(GO)as a new nano-enhancer in cement-based materials has gained wide attention.However,GO is easy to aggregate in alkaline cement mortar with poor dispersibility.This hinders its application in practical...Graphene oxide(GO)as a new nano-enhancer in cement-based materials has gained wide attention.However,GO is easy to aggregate in alkaline cement mortar with poor dispersibility.This hinders its application in practical infrastructure construction.In this work,GO-M18 polycarboxylate compound superplasticizer(GM)were obtained by compounding the M18 polycarboxylate superplasticizer with GO solution at different mass ratios.The dispersion of GM in alkaline solution was systematically studied.The phases and functional groups of GM were characterized by XRD and FTIR.The effects of GM on the cement mortar hydration and the formation of microstructure were investigated by measuring the heat of hydration,MIP,TG/DSC,and SEM.The results show that the long-chain structure of the M18 polycarboxylate superplasticizer can increase the interlayer spacing of GO and weaken the force between GO sheets.The modified GO can be uniformly dispersed in the cement slurry.GM can accelerate the early hydration process of cement,which can increase the content of Ca(OH)2 and decrease the grain size.It can optimize the pore size distribution of cement-based materials,increase the density of harmless and less harmful pores,thereby improving mechanical properties.Such methods can transform traditional cement-based materials into stronger,more durable composites,which prolong the life of cement-based materials and reduce the amount of cement used for later maintenance.This provides an idea for achieving sustainability goals in civil engineering.展开更多
Main performance of the cement grouting materials made up by Portland cement(PC) and sulphoaluminate cement(SAC) was investigated in this program, a kind of expanding agent(EA) which was mainly constituted by me...Main performance of the cement grouting materials made up by Portland cement(PC) and sulphoaluminate cement(SAC) was investigated in this program, a kind of expanding agent(EA) which was mainly constituted by metakaolin and alunite was utilized for the compensation of the shrinkage, the hydration products and micro structure of the grouting materials were researched by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results showed that a high expansion rate of the grouting materials could be reached as the expanding agent mixed in 6% of PC mass; the addition of SAC in the S2(PC:SAC:EA=34:6:2.25) brought a further improvement of the expansion rate of the grouting materials, the analysis of XRD and SEM showed that due to the reaction of expanding agent and SAC in the grouting materials, more ettringite crystal was generated, which resulted in a higher early strength, the addition of SAC played an expansion and strength reinforcement role in the grouting materials.展开更多
Purpose: The purpose of this review was to critically analyse the cun;ent evidence investigating the effect of an athlete's hydration status on physical performance. Methods: A literature search of multiple databas...Purpose: The purpose of this review was to critically analyse the cun;ent evidence investigating the effect of an athlete's hydration status on physical performance. Methods: A literature search of multiple databases was used to identify studies that met the inclusion criteria for this review. The included studies were then critically appraised using the Downs and Black protocol. Results: Nine articles were found to meet the inclusion criteria, with an average score of 79% for methodological quality representative of a "high" standard of research. Conclusion: The evidence suggests that dehydration has a negative impact on physical performance for activities lasting more than 30 s in duration. However dehydration was found to have no significant impact on physical performance for activities lasting less than 15 s in duration.展开更多
基金Funded by the National Key R&D Program of China(No.2017YFC0703206).
文摘The feasibility of utilizing molybdenum tailing and diatomite as siliceous materials to prepare calcium silicate board was explored.The influences of molybdenum tailing/diatomite proportion on hydration characteristics,thermal conductivity,water absorption,flexural strength and moisture adsorption-desorption property of calcium silicate board were investigated in detail.The experimental results reveal that molybdenum tailing is environmentally friendly to prepare building materials.The main hydration products in calcium silicate board under autoclaved condition are C-S-H with low crystallinity and tobermorite.Molybdenum tailing is favorable to the formation of tobermorite.The flexural strength and bulk density of the calcium silicate board gradually increase when the content of molybdenum tailing increases.Netlike C-S-H is formed with the increase of diatomite content during autoclaved curing process,resulting in the enhancement of moisture adsorptiondesorption performance and the reduction of thermal conductivity.The optimal content of molybdenum tailing is 20%,furthermore,the flexual strength and thermal conductivity of calcium silicate board at this content meet the Chinese standard JC/T564.1-2008.
基金Funded by the National Natural Science Foundation of China(Nos.51132010 and 51272222)the Programs for Science and Technology Development of Yantai City,Shandong Province,China(No.2012ZH249)
文摘Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.
文摘We herein evaluate the use of a chemical heat pump (CHP) for upgrading waste heat. CaCl<sub>2</sub> was used in the system of CHP. We evaluated the heat storage and heat releasing of CHP, and confirmed the practicality from the experimental results. The reactor module employed was an aluminum plate-tube heat exchanger with corrugated fins, and the CaCl<sub>2</sub> powder was in the form of a packed bed. Heat storage operation and heat dissipation operation are performed at the same time and supplied to the heat demand destination. At this time, an environmental heat source can be used during the heat radiation operation, and the heat output can release more heat than the heat input during heat storage. The heat discharging and charging characteristics of the reactor module were evaluated experimentally. The coefficient of performance (COP) was calculated for the heat upgrading cycle, and the heat output in the system was determined. A COP of 1.42 and output of 650 W/L, based on the heat exchanger volume, were obtained using a 600 s change time for the heat pump.
基金funded by the National Natural Science Foundation of China(No.51872137)and Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Graphene oxide(GO)as a new nano-enhancer in cement-based materials has gained wide attention.However,GO is easy to aggregate in alkaline cement mortar with poor dispersibility.This hinders its application in practical infrastructure construction.In this work,GO-M18 polycarboxylate compound superplasticizer(GM)were obtained by compounding the M18 polycarboxylate superplasticizer with GO solution at different mass ratios.The dispersion of GM in alkaline solution was systematically studied.The phases and functional groups of GM were characterized by XRD and FTIR.The effects of GM on the cement mortar hydration and the formation of microstructure were investigated by measuring the heat of hydration,MIP,TG/DSC,and SEM.The results show that the long-chain structure of the M18 polycarboxylate superplasticizer can increase the interlayer spacing of GO and weaken the force between GO sheets.The modified GO can be uniformly dispersed in the cement slurry.GM can accelerate the early hydration process of cement,which can increase the content of Ca(OH)2 and decrease the grain size.It can optimize the pore size distribution of cement-based materials,increase the density of harmless and less harmful pores,thereby improving mechanical properties.Such methods can transform traditional cement-based materials into stronger,more durable composites,which prolong the life of cement-based materials and reduce the amount of cement used for later maintenance.This provides an idea for achieving sustainability goals in civil engineering.
基金Funded by the National Key Technology R&D Program in the12th Five Year Plan of China(No.2011BAE14B06)the National High Technology ResearchDevelopment Program of China(No.2015AA034701)
文摘Main performance of the cement grouting materials made up by Portland cement(PC) and sulphoaluminate cement(SAC) was investigated in this program, a kind of expanding agent(EA) which was mainly constituted by metakaolin and alunite was utilized for the compensation of the shrinkage, the hydration products and micro structure of the grouting materials were researched by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results showed that a high expansion rate of the grouting materials could be reached as the expanding agent mixed in 6% of PC mass; the addition of SAC in the S2(PC:SAC:EA=34:6:2.25) brought a further improvement of the expansion rate of the grouting materials, the analysis of XRD and SEM showed that due to the reaction of expanding agent and SAC in the grouting materials, more ettringite crystal was generated, which resulted in a higher early strength, the addition of SAC played an expansion and strength reinforcement role in the grouting materials.
文摘Purpose: The purpose of this review was to critically analyse the cun;ent evidence investigating the effect of an athlete's hydration status on physical performance. Methods: A literature search of multiple databases was used to identify studies that met the inclusion criteria for this review. The included studies were then critically appraised using the Downs and Black protocol. Results: Nine articles were found to meet the inclusion criteria, with an average score of 79% for methodological quality representative of a "high" standard of research. Conclusion: The evidence suggests that dehydration has a negative impact on physical performance for activities lasting more than 30 s in duration. However dehydration was found to have no significant impact on physical performance for activities lasting less than 15 s in duration.