Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. ...Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. The order of the model is 4/4, and can be reduced to 2/2. Based on modulating functions method, utilizing numerical integration, we constructed the equivalent identification model of HAGC, and the least square estimation algorithm was established. The input and output data were acquired on line at temper rolling mill in Shangshai Baosteel Group Corporation, and the continuous time model of HAGC system was estimated with the proposed method. At different modulating window intervals, the estimated parameters changed remarkably. When the frequency bandwidth of modulating filter matches that of estimated system, the parameters can be estimated accurately. Finally, the dynamic model of the HAGC was obtained and validated based on the spectral analysis result.展开更多
In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold st...In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.展开更多
For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system ...For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system has settled the problems of recognizing and controlling the unknown, uncertain and nonlinear system successfully, and has been applied to hydraulic roll bending control. The simulation results indicate that the system has good performance and strong robustness, and is better than traditional PID and neural-fuzzy control. The method is an effective tool to control roll bending force with increased dynamic response speed of control system and enhanced tracking accuracy.展开更多
One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neu...One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective.展开更多
Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ...Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ground devices is generally determined by experience.However,too large reshaping force may destroy the deformed casing,and too small reshaping force may also prolong the construction period and affect the repairing effect.In this paper,based on Hertz contact theory and elastic-plastic theory,combined with the process parameters of shaping,and considering the structural characteristics of the deformed casing and reshaper,we propose a mathematical model for calculating the reshaping force required for repairing deformed casing by hydraulic rolling reshaper.Meanwhile,the finite element model and numerical method of hydraulic rolling reshaper repairing deformed casing are established by using the finite element method,and the reliability of the mathematical model is verified by several examples.On this basis,the control variable method is used to investigate the influence of each parameter on the reshaping force,and the influence degree of each parameter is explored by orthogonal simulation test and Pearson correlation analysis.The research results not only provide an important theoretical basis for the prediction of reshaping force in on-site construction,but also provide a reference for the subsequent improvement of the shaping process.展开更多
文摘Including servo valve, hydraulic cylinder, mill and sensor and ignoring nonlinear factors, the linear dynamic model of hydraulic automatic gage control(HAGC) system of a temper rolling mill was theoretically derived. The order of the model is 4/4, and can be reduced to 2/2. Based on modulating functions method, utilizing numerical integration, we constructed the equivalent identification model of HAGC, and the least square estimation algorithm was established. The input and output data were acquired on line at temper rolling mill in Shangshai Baosteel Group Corporation, and the continuous time model of HAGC system was estimated with the proposed method. At different modulating window intervals, the estimated parameters changed remarkably. When the frequency bandwidth of modulating filter matches that of estimated system, the parameters can be estimated accurately. Finally, the dynamic model of the HAGC was obtained and validated based on the spectral analysis result.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(20131033)supported by the Ph D Start-up Fund of Natural Science Foundation of Liaoning Province,ChinaProject(N140704001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.
文摘For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system has settled the problems of recognizing and controlling the unknown, uncertain and nonlinear system successfully, and has been applied to hydraulic roll bending control. The simulation results indicate that the system has good performance and strong robustness, and is better than traditional PID and neural-fuzzy control. The method is an effective tool to control roll bending force with increased dynamic response speed of control system and enhanced tracking accuracy.
文摘One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective.
基金financially supported by the National Natural Science Foundation of China (51674088)Natural Science Foundation of Heilongjiang Province of China (LH 2021E011)。
文摘Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ground devices is generally determined by experience.However,too large reshaping force may destroy the deformed casing,and too small reshaping force may also prolong the construction period and affect the repairing effect.In this paper,based on Hertz contact theory and elastic-plastic theory,combined with the process parameters of shaping,and considering the structural characteristics of the deformed casing and reshaper,we propose a mathematical model for calculating the reshaping force required for repairing deformed casing by hydraulic rolling reshaper.Meanwhile,the finite element model and numerical method of hydraulic rolling reshaper repairing deformed casing are established by using the finite element method,and the reliability of the mathematical model is verified by several examples.On this basis,the control variable method is used to investigate the influence of each parameter on the reshaping force,and the influence degree of each parameter is explored by orthogonal simulation test and Pearson correlation analysis.The research results not only provide an important theoretical basis for the prediction of reshaping force in on-site construction,but also provide a reference for the subsequent improvement of the shaping process.