期刊文献+
共找到4,112篇文章
< 1 2 206 >
每页显示 20 50 100
Hydraulic support crushed mechanism for the shallow seam mining face under the roadway pillars of room mining goaf 被引量:9
1
作者 Wang Fangtian Duan Chaohua +2 位作者 Tu Shihao Liang Ningning Bai Qingsheng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期853-860,共8页
While the fully-mechanized longwall mining technology was employed in a shallow seam under a room mining goaf and overlained by thin bedrock and thick loose sands, the roadway pillars in the abandoned room mining goaf... While the fully-mechanized longwall mining technology was employed in a shallow seam under a room mining goaf and overlained by thin bedrock and thick loose sands, the roadway pillars in the abandoned room mining goaf were in a stress-concentrated state, which may cause abnormal roof weighting, violent ground pressure behaviours, even roof fall and hydraulic support crushed(HSC) accidents. In this case,longwall mining safety and efficiency were seriously challenged. Based on the HSC accidents occurred during the longwall mining of 3-1-2 seam, which locates under the intersection zone of roadway pillars in the room mining goaf of 3-1-1 seam, this paper employed ground rock mechanics to analyse the overlying strata structure movement rules and presented the main influence factors and determination methods for the hydraulic support working resistance. The FLAC3 D software was used to simulate the overlying strata stress and plastic zone distribution characteristics. Field observation was implemented to contrastively analyse the hydraulic support working resistance distribution rules under the roadway pillars in strike direction, normal room mining goaf, roadway pillars in dip direction and intersection zone of roadway pillars. The results indicate that the key strata break along with rotations and reactions of the coal pillars deliver a larger concentrated load to the hydraulic support under intersection zone of roadway pillars than other conditions. The ‘‘overburden strata-key strata-roadway pillars-immediate roof" integrated load has exceeded the yield load that leads to HSC accidents. Findings in HSC mechanism provide a reasonable basis for shallow seam mining, and have important significance for the implementation of safe and efficient mining. 展开更多
关键词 Shallow seam ROOM MINING GOAF LONGWALL MINING hydraulic support CRUSHED mechanism Safe and efficient MINING
下载PDF
THEORETICAL ANALYSIS AND DESIGN/CALCULATION FORMULAE FOR HYDRAULIC IMPACT MECHANISM 被引量:3
2
作者 He Qinghua(Department of Mechanical Engineering ,Central South University of Technology , Changsha 410083) 《中国有色金属学会会刊:英文版》 CSCD 1995年第1期116-121,共6页
THEORETICALANALYSISANDDESIGN/CALCULATION FORMULAEFOR HYDRAULICIMPACTMECHANISMHe;Qinghua(DepartmentofMechanic... THEORETICALANALYSISANDDESIGN/CALCULATION FORMULAEFOR HYDRAULICIMPACTMECHANISMHe;Qinghua(DepartmentofMechanicalEngineering,Cen... 展开更多
关键词 hydraulic IMPACT mechanism ACCELERATION ratio unretrieved oil
下载PDF
Hydraulic mechanism and time-dependent characteristics of loose gully deposits failure induced by rainfall 被引量:1
3
作者 Yong Wu Siming He 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期708-715,共8页
Failure of loose gully deposits under the effect of rainfall contributes to the potential risk of debris flow.In the past decades, researches on hydraulic mechanism and time-dependent characteristics of loosedeposits ... Failure of loose gully deposits under the effect of rainfall contributes to the potential risk of debris flow.In the past decades, researches on hydraulic mechanism and time-dependent characteristics of loosedeposits failure are frequently reported, however adequate measures for reducing debris flow are notavailable practically. In this context, a time-dependent model was established to determine the changesof water table of loose deposits using hydraulic and topographic theories. In addition, the variation inwater table with elapsed time was analyzed. The formulas for calculating hydrodynamic and hydrostaticpressures on each strip and block unit of deposit were proposed, and the slope stability and failure risk ofthe loose deposits were assessed based on the time-dependent hydraulic characteristics of establishedmodel. Finally, the failure mechanism of deposits based on infinite slope theory was illustrated, with anexample, to calculate sliding force, anti-sliding force and residual sliding force applied to each slice. Theresults indicate that failure of gully deposits under the effect of rainfall is the result of continuouslyincreasing hydraulic pressure and water table. The time-dependent characteristics of loose depositfailure are determined by the factors of hydraulic properties, drainage area of interest, rainfall pattern,rainfall duration and intensity. 展开更多
关键词 Loose deposits Time-dependent characteristics Groundwater lever hydraulic mechanism
下载PDF
Mechanisms and Kinematics of Hydraulic Support for Top-Coal Caving 被引量:3
4
作者 董志峰 王寿峰 +1 位作者 常宏 吴建 《Journal of China University of Mining and Technology》 2001年第2期155-158,共4页
The structure and characteristic of new type of hydraulic support for top coal caving were discussed. The mechanism and kinematics of the hydraulic support were analyzed. The formulas were deduced to calculate the vel... The structure and characteristic of new type of hydraulic support for top coal caving were discussed. The mechanism and kinematics of the hydraulic support were analyzed. The formulas were deduced to calculate the velocity and acceleration of top beam, shield beam, front and back legs, which give the solution to the design and research for hydraulic support. 展开更多
关键词 top coal caving hydraulic support mechanismS KINEMATICS
下载PDF
The mechanism of hydraulic fracturing assisted oil displacement to enhance oil recovery in low and medium permeability reservoirs 被引量:2
5
作者 LIU Yikun WANG Fengjiao +8 位作者 WANG Yumei LI Binhui ZHANG Dong YANG Guang ZHI Jiqiang SUN Shuo WANG Xu DENG Qingjun XU He 《Petroleum Exploration and Development》 CSCD 2022年第4期864-873,共10页
Aiming at the technology of hydraulic fracturing assisted oil displacement which combines hydraulic fracturing,seepage and oil displacement,an experimental system of energy storage and flowback in fracturing assisted ... Aiming at the technology of hydraulic fracturing assisted oil displacement which combines hydraulic fracturing,seepage and oil displacement,an experimental system of energy storage and flowback in fracturing assisted oil displacement process has been developed and used to simulate the mechanism of percolation,energy storage,oil displacement and flowback of chemical agents in the whole process.The research shows that in hydraulic fracturing assisted oil displacement,the chemical agent could be directly pushed to the deeper area of the low and medium permeability reservoirs,avoiding the viscosity loss and adhesion retention of chemical agents near the pay zone;in addition,this technology could effectively enlarge the swept volume,improve the oil displacement efficiency,replenish formation energy,gather and exploit the scattered residual oil.For the reservoir with higher permeability,this measure takes effect fast,so to lower cost,and the high pressure hydraulic fracturing assisted oil displacement could be adopted directly.For the reservoir with lower permeability which is difficult to absorb water,hydraulic fracturing assisted oil displacement with surfactant should be adopted to reduce flow resistance of the reservoir and improve the water absorption capacity and development effect of the reservoir.The degree of formation energy deficit was the main factor affecting the effective swept range of chemical agents.Moreover,the larger the formation energy deficit was,the further the seepage distance of chemical agents was,accordingly,the larger the effective swept volume was,and the greater the increase of oil recovery was.Formation energy enhancement was the most important contribution to enhanced oil recovery(EOR),which was the key to EOR by the technology of hydraulic fracturing assisted oil displacement. 展开更多
关键词 hydraulic fracturing chemical flooding formation energy enhancement remaining oil distribution oil displacement mechanism enhancing oil recovery
下载PDF
Failure Patterns and Mechanisms of Hydraulic Fracture Propagation Behavior in the Presence of Naturally Cemented Fractures 被引量:1
6
作者 Daobing Wang Fang Shi +2 位作者 Hao Qin Dongliang Sun Bo Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第3期891-914,共24页
In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the pro... In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the proposed numerical model,the lubrication equation is adopted to describe the fluid flow within fractures.The fluid-solid coupling systems of the hydraulic fracturing problem are solved using the Newton-Raphson method.The energy release rate criterion is used to determine the cross/arrest behavior between a hydraulic fracture(HF)and a cemented natural fracture(NF).The failure patterns and mechanisms of crack propagation at the intersection of natural fractures are discussed.Simulation results show that after crossing an NF,the failure mode along the cemented NF path may change from the tensile regime to the shear or mixed-mode regime.When an advancing HF kinks back toward the matrix,the failure mode may gradually switch back to the tensile-dominated regime.Key factors,including the length of the upper/lower portion of the cemented NF,horizontal stress anisotropy,and the intersection angle of the crack propagation are investigated in detail.An uncemented or partially cemented NF will form a more complex fracture network than a cemented NF.This study provides insight into the formation mechanism of fracture networks in formations that contain cemented NF. 展开更多
关键词 hydraulic fracturing natural fractures crack propagation unconventional reservoirs mechanical interaction JOINTS
下载PDF
A New Type of Continuously Variable Displacement Mechanism Used for Hydraulic Motors 被引量:1
7
作者 李勇 施光林 陈兆能 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第1期125-130,共6页
A continuously variable displacement mechanism, which is composed of a hydraulic control valve with mechanical-positional feedback to camshaft, was designed for changing the displacement of traditional camshaft connec... A continuously variable displacement mechanism, which is composed of a hydraulic control valve with mechanical-positional feedback to camshaft, was designed for changing the displacement of traditional camshaft connecting-rod low speed high torque (LSHT) hydraulic motor continuously. The new type of continuously variable displacement mechanism is simple and easy to be made. The structure and principle of a continuously variable displacement mechanism was introduced. The mathematic model of the continuously variable displacement mechanism was set up and its static and dynamic characteristics were analyzed with the help of computer simulation. It can be seen that the cam ring on camshaft of the traditional LSHT hydraulic motor can stop at any position between minimum and maximum eccentricity, according to an input fluid pressure signal. And it can also stay anywhere stably through self-adjusting. Besides, it can work stabilized when load impact or oil leakage exists. 展开更多
关键词 LSHT hydraulic motor camshaft connecting-rod continuously variable displacement mechanism mechanical-positional feedback
下载PDF
Design of hydraulic shift mechanism for AMT vehicles based on the collaborative optimization method 被引量:1
8
作者 苗成生 刘海鸥 +1 位作者 陈慧岩 胡宇辉 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期35-41,共7页
Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the... Based on multidisciplinary design optimization(MDO),a new design method is put forward for hydraulic shift mechanism of heavy-duty vehicle automated manual transmission(AMT).Taking a shift cylinder for example,the collaborative optimization(CO)method for the design problem of a cylinder is devided into one system level design optimization problem and three subsystem level design optimization problems.The system level is an economic model and the subsystem level is mechanics,kinetics,and a reliability model.Application of the multidisciplinary design optimization software iSIGHT modeling and solving,optimal solution of the shifting cylinder CO model is obtained.According to the optimal solution,oil cylinders are machined out and installed on the gearbox of an AMT system for the bench cycle shift test.The results show that the output force and action speed of the optimized mechanism can meet requirements very well.In addition,the optimized mechanism has a better performance compared to the structure of the traditional design method,which indicates that the CO method can optimize the design of hydraulic transmission. 展开更多
关键词 hydraulic shifting mechanism collaborative optimization automated manual transmission
下载PDF
Reducing-resistance mechanism of vibratory excavation of hydraulic excavator
9
作者 朱建新 杨成云 +1 位作者 胡火焰 邹湘伏 《Journal of Central South University of Technology》 EI 2008年第4期535-539,共5页
Based on the working principle of vibratory excavation of hydraulic excavator,the expression of digging resistance changed with time under sine wave inspiritment was deduced;a comparison analysis was given after calcu... Based on the working principle of vibratory excavation of hydraulic excavator,the expression of digging resistance changed with time under sine wave inspiritment was deduced;a comparison analysis was given after calculating the forces status of rock and soil under static load and vibratory load respectively by using MATLAB;and then RFPA-2D(rock failure process analysis code)was used to make comparison of simulation experiment on rock and soil failure process under static load and vibratory load.The results demonstrate that,compared with the normal excavation under the same situation,the digging resistance and the energy consumption can be reduced by respectively 30%and 60%at maximum,and that the working efficiency can be increased by 45%at maximum owing to vibratory excavation. 展开更多
关键词 hydraulic excavator vibratory excavation reducing-resistance mechanism SIMULATION
下载PDF
Experimental characterization and mechanism of hydraulic pulsation waves driving microscopic residual oil
10
作者 WU Feipeng LI Na +6 位作者 YANG Wei CHEN Jiahao DING Bujie XIA Lei LIU Jing WANG Cong WANG Lushan 《Petroleum Exploration and Development》 CSCD 2022年第6期1411-1422,共12页
To clarify microscopic mechanisms of residual oil displacement by hydraulic pulsation wave,microscopic visualization experiments of hydraulic pulsation wave driving residual oil were carried out by using the microscop... To clarify microscopic mechanisms of residual oil displacement by hydraulic pulsation wave,microscopic visualization experiments of hydraulic pulsation wave driving residual oil were carried out by using the microscopic visualization device of pulsating water drive.For the four types of residual oil left in the reservoir after water flooding,i.e.membrane,column,cluster,and blind end residual oils,hydraulic pulsation waves broke the micro-equilibrium of the interface by disturbing the oil-water interface,so that the injected water invaded into and contacted with the remaining oil in small pores and blind holes,and the remaining oil was pushed or stripped to the mainstream channel by deformation superposition effect and then carried out by the injected water.In the displacement,the pulsation frequency mainly affected the cluster and blind end remaining oil,and the hydraulic pulsation wave with a frequency of about 1 Hz had the best effect in improving the recovery.The pulsation amplitude value mainly affected the membrane and column residual oil,and the larger the amplitude value,the more remaining oil the hydraulic pulsation wave would displace.The presence of low intensity continuous flow pressure and holding pressure end pressure promoted the concentration of pulsating energy and greatly improve the recovery of cluster residual oil.The rise in temperature made the hydraulic pulsation wave work better in displacing remaining oil,improving the efficiency of oil flooding. 展开更多
关键词 hydraulic pulsation wave microscopic remaining oil oil displacement mechanism disturbance of oil-water interface enhanced oil recovery
下载PDF
Analysis of the Oscillating Mechanism of an Aerial Work Platform Based on ADAMS Hydraulic-Mechanical Coupling Simulation 被引量:2
11
作者 GU De-jun TENG Ru-min +2 位作者 GAO Shun-de BAI Ri GAO Kai-qing 《International Journal of Plant Engineering and Management》 2008年第3期154-158,共5页
Rigid model of the aerial work platform and hydraulic model of the oscillating mechanism were established with ADAMS. The simulation of two parameters, cy-linder force and oil chamber pressure, was carried out. The si... Rigid model of the aerial work platform and hydraulic model of the oscillating mechanism were established with ADAMS. The simulation of two parameters, cy-linder force and oil chamber pressure, was carried out. The simulation result is useful to the design of the oscillating mechanism. 展开更多
关键词 aerial work platform oscillating mechanism hydraulic-mechanical coupling simulation
下载PDF
The depth effect of geological mechanics and hydraulic behaviors of rock mass 被引量:6
12
作者 虎维岳 闫兰英 张壮路 《Journal of Coal Science & Engineering(China)》 2007年第3期252-255,共4页
Significant changes of geological and hydraulic behaviors of rock mass with depth was studied. The general regulation and the critical depth of qualitative change of rock mass geological and hydraulic changes with dep... Significant changes of geological and hydraulic behaviors of rock mass with depth was studied. The general regulation and the critical depth of qualitative change of rock mass geological and hydraulic changes with depth were studied. Preliminary research show that the mechanical properties of rock mass gradually change from solid to plastic with the increasing of its buried depth. The critical depth of this tendency was controlled by geological properties of rock mass and its overlying rock. The critical depths are different in different regions because of its different geological condition. The general change depth of rock mass from rigid property to plastic property in coal mine regions of North China is about 1 800-2 300 m. The hydraulic permeability of rock mass will change significantly with depth because of the geological and hydraulic mechanics changes from solid to plastic and the groundwater circulation condition in karst and fractured aquifer will also change. The results reflact that the stability, deformation, failure, permeability and groundwater hazardous condition of rock mass during deep mining process are quite different from that of shallow mining's. 展开更多
关键词 rock mass geological mechanics hydraulic depth effect
下载PDF
Hydraulic fracturing behaviors of shale under coupled stress and temperature conditions simulating different burial depths
13
作者 Qin Zhou Zheming Zhu +6 位作者 Wei Liu Huijun Lu Zidong Fan Xiaofang Nie Cunbao Li Jun Wang Li Ren 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期783-797,共15页
Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments we... Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments were conducted on hollow double-wing crack specimens of the Longmaxi shale under conditions simulating the ground surface(confining pressure σ_(cp)=0, room temperature(Tr)) and at depths of 1600 m(σ_(cp)=40 MPa, Ti=70 ℃) and 3300 m(σ_(cp)=80 MPa, high temperature Ti=110 ℃) in the study area.High in situ stress was found to significantly increase fracture toughness through constrained microcracking and particle frictional bridging mechanisms. Increasing the temperature enhances rather than weakens the fracture resistance because it increases the grain debonding length, which dissipates more plastic energy and enlarges grains to close microdefects and generate compressive stress to inhibit microcracking. Interestingly, the fracture toughness anisotropy in the shale was found to be nearly constant across burial depths, despite reported variations with increasing confining pressure. Heated water was not found to be as important as the in situ environment in influencing shale fracture. These findings emphasize the need to test the fracture toughness of deep shales under coupled in situ stress and temperature conditions rather than focusing on either in situ stress or temperature alone. 展开更多
关键词 hydraulic fracturing Fracture toughness SHALE ANISOTROPY Deep rock mechanics
下载PDF
A comparative study on kinetics and dynamics of two dump truck lifting mechanisms using MATLAB simscape
14
作者 Thong Duc Hong Minh Quang Pham +2 位作者 Son Cong Tran Lam Quang Tran Truong Thanh Nguyen 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期146-156,共11页
In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are e... In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems. 展开更多
关键词 Dump truck Lifting mechanism hydraulic MATLAB Simscape Kinetic dynamic analysis
下载PDF
Wellbore Cleaning Degree and Hydraulic Extension in Shale Oil Horizontal Wells
15
作者 Xin Ai Mian Chen 《Fluid Dynamics & Materials Processing》 EI 2024年第3期661-670,共10页
The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investiga... The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investigated experimentallyby focusing on the dimensionless cuttings bed height. A method is proposed to calculate the horizontalwellhydraulic extension taking into account the influence of the wellbore cleaning degree on the wellborepressure distribution and assess the effect of a variety of factors such as the bottom hole pressure, the circulatingpressure drop, the drilling pump performance and the formation properties. The analysis shows that the hydraulicextension of horizontal wells decreases with an increase in the cuttings bed height, and the higher the displacementof drilling fluid, the faster the hydraulic extension declines. The annular pressure drop of the horizontalsection increases with the increase of the cuttings bed height, resulting in a higher bottom-hole pressure. Severalarguments are provided to guide the safe drilling of shale oil horizontal wells and overcome the limits of currenttechnological approaches. 展开更多
关键词 Shale oil horizontal well hydraulic extension wellbore cleaning degree pressure distribution mechanism analysis
下载PDF
A review of mechanical deformation and seepage mechanism of rock with filled joints
16
作者 Lei Yue Wei Li +2 位作者 Yu Liu Shuncai Li Jintao Wang 《Deep Underground Science and Engineering》 2024年第4期439-466,共28页
Various defects exist in natural rock masses,withfilled joints being a vital factor complicating both the mechanical characteristics and seepage mechanisms of the rock mass.Filled jointed rocks usually show mechanical ... Various defects exist in natural rock masses,withfilled joints being a vital factor complicating both the mechanical characteristics and seepage mechanisms of the rock mass.Filled jointed rocks usually show mechanical properties that are weaker than those of intact rocks but stronger than those of rocks with fractures.The shape of the rock,filling material,prefabricatedfissure geometry,fissure roughness,fissure inclination angle,and other factors mainly influence the mechanical and seepage properties.This paper systematically reviews the research progress andfindings onfilled rock joints,focusing on three key aspects:mechanical properties,seepage properties,andflow properties under mechanical response.First,the study emphasizes the effects of prefabricated defects(shape,size,filling material,inclination angle,and other factors)on the mechanical properties of the rock.The fracture extension behavior of rock masses is revealed by the stress state of rocks withfilled joints under uniaxial compression,using advanced auxiliary test techniques.Second,the seepage properties of rocks withfilled joints are discussed and summarized through theoretical analysis,experi-mental research,and numerical simulations,focusing on organizing the seepage equations of these rocks.The study also considers the form of failure under stress-seepage coupling for both fullyfilled and partiallyfilledfissured rocks.Finally,the limitations in the current research on the rock withfilled joints are pointed out.It is emphasized that the specimens should more closely resemble real conditions,the analysis of mechanical indexes should be multi-parameterized,the construction of the seepage model should be refined,and the engineering coupling application should be multi-field-multiphase. 展开更多
关键词 destruction mechanism filled joints hydraulic coupling numerical simulations SEEPAGE
下载PDF
Influence of Bedding and Mineral Composition on Mechanical Properties and Its Implication for Hydraulic Fracturing of Shale Oil Reservoirs 被引量:2
17
作者 WANG Xiaoqiong XU Jianguo +6 位作者 ZHAO Chenxu LIU Tongyuan GE Hongkui SHEN Yinghao WU Shan YU Jiayao HUANG Rongyan 《Earthquake Research in China》 CSCD 2020年第2期167-186,共20页
The premise of hydraulic fracturing is to have an accurate and detailed understanding of the rock mechanical properties and fracture propagation law of shale reservoirs. In this paper,a comprehensive evaluation of the... The premise of hydraulic fracturing is to have an accurate and detailed understanding of the rock mechanical properties and fracture propagation law of shale reservoirs. In this paper,a comprehensive evaluation of the mechanical properties of the shale oil reservoir in the south of Songliao Basin is carried out. Based on the experiments and the in-situ stress analysis, the fracture propagation law of three types of shale reservoirs is obtained,and the suggestions for fracturing are put forward. The results have shown that the fracture propagation of pure shale and low mature reservoir is easy to open along the bedding plane under compression loading,which is greatly influenced by the bedding. Sand-bearing shale is slightly better,the fractures of which are not easy to open along the bedding plane. The mechanical experimental results show that all the samples have the characteristics of low compressive strength,low Young’s modulus and strong anisotropy,indicating that the shale oil reservoir is certain plastic,which is related to its high clay mineral content and controlled by the bedding development. Compared with pure shale and low mature shale,the sandbearing shale has less clay content and less developed bedding,which maybe the main reason for its slightly better brittleness. Overall,the expansion of hydraulic fracture is controlled by in-situ stress and bedding. Because of the development of bedding,it is easy to form horizontal fractures. Thus it is not suitable for horizontal well fracturing.Because of the high content of clay minerals,the applicability of conventional slick hydraulic fracturing fluid is poor. It is suggested to use vertical well or directional well to carry out volume fracturing. In this way,the effect of bedding can be effectively used to open and connect the bedding and form a larger fracture network. 展开更多
关键词 Shale reservoir mechanical properties Fracture hydraulic fracturing Horizontal well BEDDING
下载PDF
Mechanical and hydraulic properties of fault rocks under multi‑stage cyclic loading and unloading 被引量:1
18
作者 Wentao Hou Dan Ma +3 位作者 Qiang Li Jixiong Zhang Yong Liu Chenyao Zhou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期151-170,共20页
The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock durin... The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock during the cyclic loading and unloading is of great signifcance for revealing the formation mechanism of water-conducting pathways in fault and preventing water inrush disasters.In this study,the mechanical and seepage tests of fault rock under the multi-stage cyclic loading and unloading of axial compression were carried out by using the fuid–solid coupling triaxial experimental device.The hysteresis loop of the stress–strain curve,peak strain rate,secant Young's modulus,and permeability of fault rock were obtained,and the evolution law of the dissipated energy of fault rock with the cyclic number of load and unloading was discussed.The experimental results show that with an increase in the cyclic number of loading and unloading,several changes occur.The hysteresis loop of the stress–strain curve of the fault rock shifts towards higher levels of strain.Additionally,both the peak strain rate and the secant Young's modulus of the fault rock increase,resulting in an increase in the secant Young's modulus of the fault rock mass.However,the growth rate of the secant Young's modulus gradually slows down with the increase of cyclic number of loading and unloading.The permeability evolution of fault rock under the multi-stage cyclic loading and unloading of axial compression can be divided into three stages:steady increase stage,cyclic decrease stage,and rapid increase stage.Besides,the calculation model of dissipated energy of fault rock considering the efective stress was established.The calculation results show that the relationship between the dissipated energy of fault rock and the cyclic number of loading and unloading conforms to an exponential function. 展开更多
关键词 Multi-stage cyclic loading and unloading Fault rocks mechanical properties hydraulic properties Energy dissipation
下载PDF
Thermal hydraulic and mechanical analysis of CH HCSB TBM 被引量:5
19
作者 WANG Xiao-yu FENG Kai-ming ZHANG Guo-shu YUAN Tao 《核聚变与等离子体物理》 EI CAS CSCD 北大核心 2006年第3期181-185,共5页
Based on the structure design and results of neutronics analysis of the CH HCSB TBM (Chinese helium cooled solid breeder test blanket module), thermal hydraulic and mechanical analyses have been carried out. Results s... Based on the structure design and results of neutronics analysis of the CH HCSB TBM (Chinese helium cooled solid breeder test blanket module), thermal hydraulic and mechanical analyses have been carried out. Results show that the design of the CH HCSB TBM is reasonable and acceptable. 展开更多
关键词 热水力分析 中子物理学分析 再生区 热核反应
下载PDF
Co-Simulation Research of the Mechanical-Hydraulic-Control Coupling System of ITER Tractor 被引量:1
20
作者 杨秀清 骆敏舟 +1 位作者 梅涛 姚达毛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第3期334-340,共7页
The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision character... The virtual prototyping models of the mechanical, hydraulic and control system of the ITER tractor were built with CATIA, ADAMS and MATLAB/Simulink respectively according to its heavy load and high precision characteristics, and the data transfer between the different models was accomplished by the integration interface between different software. Consequently the virtual experimental platform for the multi-disciplinary co-simulation was established. A co-simulation study of the mechanical-hydraulic-control coupling system of the ITER tractor was carried out. The synchronization servo control of parallel hydraulic cylinders was implemented, and the tracking control of the preconcerted trajectory of the hydraulic cylinders was realized on the established experimental platform. This paper presents the optimization design and technology rebuilding for the complicated coupling system with its theoretic foundation and co-simulation virtual experimental platform. 展开更多
关键词 CO-SIMULATION mechanical-hydraulic coupling PID control of integral separation hydraulic synchronization servo system
下载PDF
上一页 1 2 206 下一页 到第
使用帮助 返回顶部