期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
Cotton stomatal closure under varying temperature and vapor pressure deficit,correlation with the hydraulic conductance trait 被引量:1
1
作者 WEDEGAERTNER Kurt SHEKOOFA Avat +3 位作者 PURDOM Sam WALTERS Kellie DUNCAN Lori RAPER Tyson B 《Journal of Cotton Research》 CAS 2022年第3期217-227,共11页
Background:Cotton(Gossypium hirsutum L.)is often grown in locations characterized by high atmospheric evaporative demand.It has been hypothesized that plants which resist hydraulic flow under this condition will limit... Background:Cotton(Gossypium hirsutum L.)is often grown in locations characterized by high atmospheric evaporative demand.It has been hypothesized that plants which resist hydraulic flow under this condition will limit water use and conserve soil water.Therefore,in a series of controlled environment experiments ten cotton cultivars were exposed to two different temperature and vapor pressure deficit(VPD)conditions(i.e.,38℃,>3 kPa and 32℃,1∼1.5 kPa)as well as a progressive soil drying.Then,individual differences in shoot hydraulic conductance(K_(shoot))was measured using a hydraulic conductance flow meter(HCFM).Physiological parameters were reported included leaf area,dry leaf weight,stomatal conductance(g_(s)),and water use efficiency coefficient(WUE_(k)).Results:Differences were observed in K_(shoot) among cultivars under the 38℃,>3 kPa but not the 32℃,1∼1.5 kPa environment.Under the 38℃,>3 kPa environment,correlations were found between K_(shoot),stomatal conductance(gs),VPD breakpoint,WUEk,total leaf area,dry leaf weight,fraction transpirable soil water(FTSW)threshold,and slope of TR decline after FTSW threshold.Conclusion:Results show that the ability of some cotton cultivars to restrict water loss under high evaporative demand through early stomatal closure is associated with the cultivars’K_(shoot).The K_(shoot) is influential in the limitation of TR trait under high temperature and VPD. 展开更多
关键词 COTTON FTSW threshold Shoot hydraulic conductance TEMPERATURE Transpiration rate VPD
下载PDF
Spatiotemporal variations of sand hydraulic conductivity by microbial application methods
2
作者 Viroon Kamchoom Thiti Khattiwong +2 位作者 Treesukon Treebupachatsakul Suraparb Keawsawasvong Anthony Kwan Leung 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期268-278,共11页
The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prep... The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prepared using three different methods,i.e.injecting,mixing,and pouring a given microbial so-lution onto compacted sand specimens.The hydraulic conductivity was measured by constant-head tests,while any soil microstructural changes due to addition of the microbes were observed by scan-ning electron microscope(SEM)and mercury intrusion porosimetry(MIP)tests.The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer.Results show that dextran production increased exponentially after 5-7 d of microbial settling with the supply of culture medium.The injection and mixing methods resulted in a similar amount and uniform dis-tribution of dextran in the specimens.The pouring method,however,produced a nonuniform distri-bution,with a higher concentration near the specimen surface.As the supply of culture medium discontinued,the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies.Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially,due to the clogging of large soil pores by dextran.The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent. 展开更多
关键词 Bio-mediated soil DEXTRAN hydraulic conductivity Leuconostoc mesenteroides Microbial application MICROSTRUCTURE
下载PDF
Estimation of the anisotropy of hydraulic conductivity through 3D fracture networks using the directional geological entropy
3
作者 Chuangbing Zhou Zuyang Ye +2 位作者 Chi Yao Xincheng Fan Feng Xiong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期137-148,共12页
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi... With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors. 展开更多
关键词 3D fracture network Geological entropy Directional entropic scale ANISOTROPY hydraulic conductivity
下载PDF
Unraveling the hydraulic properties of loess for landslide prediction:A study on variations in loess landslides in Lanzhou,Dingxi,and Tianshui,China
4
作者 Gao-chao Lin Wei Liu Xing Su 《China Geology》 CAS CSCD 2024年第2期291-302,共12页
Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in induci... Loess has distinctive characteristics,leading to frequent landslide disasters and posing serious threats to the lives and properties of local re sidents.The involvement of water repre sents a critical factor in inducing loess landslides.This study focuses on three neighboring cities sequentially situated on the Loess Plateau along the direction of aeolian deposition of loess,namely Lanzhou,Dingxi,and Tianshui,which are densely populated and prone to landslide disasters.The variations in hydraulic properties,including water retention capacity and permeability,are investigated through Soil Water Characteristic Curve(SWCC)test and hydraulic conductivity test.The experimental findings revealed that Tianshui loess exhibited the highest water retention capacity,followed by Dingxi loess,while Lanzhou loess demonstrated the lowest water retention capacity.Contrastingly,the results for the saturated permeability coefficient were found to be the opposite:Tianshui loess showed the lowest permeability,whereas Lanzhou loess displayed the highest permeability.These results are supported and analyzed by scanning electron microscopy(SEM)observation.In addition,the water retention capacity is mathematically expressed using the van Genuchten model and extended to predict unsaturated hydraulic properties of loess.The experimental results exhibit a strong accordance with one another and align with the regional distribution patterns of disasters. 展开更多
关键词 LOESS LANDSLIDE hydraulic properties Water retention capacity and permeability Soil Water Characteristic Curve(SWCC) hydraulic conductivity Van Genuchten model Hydrogeological engineering Geological hazards prevention engineering
下载PDF
Geohydraulic Investigation of Aquifer Parameters in Abak, Southern Nigeria
5
作者 Promise James Akpan Akaninyene Okon Akankpo +2 位作者 Joseph Gordian Atat Johnson Cletus Ibout Emmanuel Bassey Umoren 《Journal of Geoscience and Environment Protection》 2024年第5期289-301,共13页
A geophysical investigation was carried out to characterize aquifer parameters and assess the groundwater condition in Abak, southern Nigeria. Vertical electrical sounding (VES) was carried out using Schlumberger conf... A geophysical investigation was carried out to characterize aquifer parameters and assess the groundwater condition in Abak, southern Nigeria. Vertical electrical sounding (VES) was carried out using Schlumberger configuration in 10 locations within the area. Both manual and computer interpretation of the resistivity data reveals three to four geoelectric units (laterite topsoil, medium-grained sand, coarse-grained sand, and sandy clay sand) which agrees with the lithologic log from existing boreholes. The aquifer layer was identified along the third formation with resistivity values ranging from 1239 - 5719 Ωm and aquifer depth ranging from 30.2 - 54.8 m. The aquifer thickness ranged from 24.2 - 43.7 m. Hydraulic conductivity ranged from 0.1206 m/day - 0.5026 m/day with an average value of 0.29403 m/day. Formation factor ranged from 14.55 - 16.64. Porosity ranged from 15.98% - 22.40%, with an average value of 19.64%. The aquiferous zone falls within the medium/coarse-grained sand. The aquifer is shallow, unconfined, and prolific with a little overburden formation of 13.5 m. The area shows good prospects for groundwater development. 展开更多
关键词 Electrical Resistivity POROSITY Formation Factor hydraulic Conductivity
下载PDF
Hydraulic and volume change behaviors of compacted highly expansive soil under cyclic wetting and drying 被引量:4
6
作者 Mohamed Farid Abbas Abdullah Ali Shaker Mosleh A.Al-Shamrani 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期486-499,共14页
The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and bounda... The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and boundary conditions individually or collectively influence the hydraulic and volume change behavior of compacted highly expansive soils.The cyclic wetting and drying(CWD)process was applied for two boundary conditions,i.e.constant stress(CS)and constant volume(CV),and for a wide range of axial stress states.The adopted CWD process affected the hydraulic and volume change behaviors of expansive soils,with the first cycle of wetting and drying being the most effective.The CWD process under CS conditions resulted in shrinkage accumulation and reduction in saturated hydraulic conductivity(k sat).On the other hand,CWD under CV conditions caused a reduction of swell pressure while has almost no impact on k sat.An elastic response to CWD was achieved after the third cycle for saturated hydraulic conductivity(k sat),the third to fourth cycle for the volume change potential under the CV conditions,and the fourth to fifth cycle for the volume change potential under the CS conditions.Finally,both swell pressure(s s)and saturated hydraulic conductivity(k sat)are not fundamental parameters of the expansive soil but rather depend on stress,boundary and wetting conditions. 展开更多
关键词 Expansive soils hydraulic conductivity Volume change potential Cyclic wetting and drying(CWD) Swell pressure
下载PDF
Spatial variability of soil hydraulic and physical properties in erosive sloping agricultural fields
7
作者 Deepak Singh Alok Kumar Mishra +3 位作者 Sridhar Patra Sankar Mariappan Nisha Singh Saswat Kumar Kar 《Water Science and Engineering》 EI CAS CSCD 2023年第1期57-66,共10页
It is essential to minimize soil quality degradation in sloping agricultural fields through stabilization and improvement of soil hydraulic properties using sustainable soil management.This study aimed to analyze the ... It is essential to minimize soil quality degradation in sloping agricultural fields through stabilization and improvement of soil hydraulic properties using sustainable soil management.This study aimed to analyze the impact of different tillage practices,including conventional tillage(CT),minimum tillage(MT),and zero tillage(ZT),on soil hydraulic conductivity in a sloping agricultural field under maizeewheat rotation.The results showed that the highest runoff volume(257.40 m3),runoff coefficient(42.84%),and soil loss(11.3 t)were observed when the CT treatment was applied.In contrast,the lowest runoff volume(67.95 m3),runoff coefficient(11.35%),and soil loss(1.05 t)were observed when the ZT treatment was adopted.The soil organic carbon and aggregate mean weight diameter were found to be significantly greater(with mean values of 0.79%and 1.19 mm,respectively)with the ZT treatment than with the CT treatment.With the tilled treatments(CT and MT),substantial changes in the saturated soil hydraulic conductivity(ks),near-saturated soil hydraulic conductivity(k),and water-conducting porosity(ε)were observed between two crop seasons.These three soil parameters were significantly higher in the period after maize harvesting than in the wheat growing period.In contrast,no significant difference in these soil parameters was found when the untilled treatment(ZT)was carried out.With regard to the slope positions,ks,k,andεshowed different behaviors under different treatments.The toe slope position showed significantly lower ks andεvalues than the summit and middle slope positions.Of the evaluated tillage practices,ZT was found to be the most promising means to improve the soil hydro-physical properties and effectively reduce surface runoff and soil erosion. 展开更多
关键词 hydraulic conductivity MACROPORE Conservation tillage Spatiotemporal variability Soil erosion
下载PDF
Saturated hydraulic conductivity of compacted bentonite-sand mixtures before and after gas migration in artificial seawater
8
作者 Yasutaka Watanabe Shingo Yokoyama +2 位作者 Misato Shimbashi Yoichi Yamamoto Takahiro Goto 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期216-226,共11页
To understand the self-healing property of an engineered barrier for radioactive waste disposal,the hydraulic conductivity of compacted bentoniteesand mixtures saturated with artificial seawater(SW)before and after ga... To understand the self-healing property of an engineered barrier for radioactive waste disposal,the hydraulic conductivity of compacted bentoniteesand mixtures saturated with artificial seawater(SW)before and after gas migration was examined.Na-and Ca-bentonites were mixed with fine sand at a ratio of 70%bentonite in dry weight.Two aspects were considered during the experiment:the hydraulic conductivity of the specimen that was resaturated after gas migration and the distribution of water content immediately after gas migration to study gas migration pathways.The gas migrated through the entire cross-section of the specimen,and gas breakthrough occurred in the equilibrium swelling pressure range approximately.Subsequently,the gas flow rate reached a sufficient large value when the gas pressure was approximately twice the equilibrium axial pressure(the sum of swelling and confining pressures),which excluded the back pressure.Although the gas migration pathway was not visible when the specimen was observed immediately after gas migration,the water content distribution showed that several parts of the specimen with lower water content were connected in the direction of gas migration.After resaturation,the change in permeability was within a limited rangedtwo to three times larger than that before gas migration for each type of bentonite in SW.This slight change suggests that gas migration creates a pore structure that cannot be sealed via crystalline swelling of montmorillonite in SW,even if highly compacted bentonite is used under a constant-volume condition. 展开更多
关键词 BENTONITE Gas migration hydraulic conductivity Seawater(SW) SELF-HEALING
下载PDF
Experimental Analysis of Hydraulic Conductivity for Saturated Granular Soils
9
作者 Ahlinhan Marx Ferdinand Djenou B. Dorothée Adjovi Edmond Codjo 《Geomaterials》 2023年第3期71-90,共20页
Hydraulic conductivity is the ability of a porous media to transfer water through its pore matrix. That is a key parameter for the design and analysis of soil fluid associated structures and issues. This paper present... Hydraulic conductivity is the ability of a porous media to transfer water through its pore matrix. That is a key parameter for the design and analysis of soil fluid associated structures and issues. This paper presents the test results of the vertical hydraulic conductivity k<sub>v</sub><sub> </sub>carried out on one poorly graded sand and three gap graded gravely sand. It was found that the vertical hydraulic conductivity of saturated soil depends on the grain size distribution curve, on the initial relative density of the soil. Compilation of these current test results and other test results published, shows that the common approaches predict well to some extent the vertical hydraulic conductivity k<sub>v</sub> for the poorly graded sand materials and underestimate the k<sub>v</sub> values for gap graded gravely sand materials. Therefore, new approaches are developed for the prediction of the vertical hydraulic conductivity in saturated poorly graded sand and gap graded gravely sand. The derived results from the new approaches lie in the range of the recommended values by (EAU 2012) and (NAVFAC DM 7 1974). 展开更多
关键词 PERMEABILITY hydraulic Conductivity TESTS Saturated Granular Soils Prediction Approaches
下载PDF
Evaluation of red soil-bentonite mixtures for compacted clay liners
10
作者 A.S.Devapriya T.Thyagaraj 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期697-710,共14页
Compacted clay liners are an integral part of the waste landfills,which are provided to contain the leachate within the landfills and protect the surrounding environment.Generally,locally available natural soils are u... Compacted clay liners are an integral part of the waste landfills,which are provided to contain the leachate within the landfills and protect the surrounding environment.Generally,locally available natural soils are used for the construction of compacted clay liners if they satisfy the design criteria.However,not all soils in their natural state satisfy all the design criteria for the liner materials.Thus,there is a definite need to modify the locally available natural soils by blending with bentonite to meet the required design criteria for the liners.In view of this,the present study evaluates the suitability of an Indian red soil enhanced with bentonite as a liner material.To achieve this,a series of experiments were carried out using locally available red soil and bentonite.First,the suitability of the red soil was evaluated as a liner material.The experimental results showed that the red soil met all the selection criteria stipulated by the Environmental Protection Agencies(EPAs)for the liners except the hydraulic conductivity criterion.Therefore,the red soil was mixed with bentonite contents of 10%,20%and 30%,and the red soil-bentonite mixtures were evaluated for their suitability for liners in their compacted state.Further,as the liners in the arid and semi-arid regions are subjected to moisture variations due to seasonal moisture fluctuations and other factors,the red soil-bentonite mixtures were subjected to wetdry cycles,and their suitability was evaluated after wet-dry cycles.The experimental results revealed that all the red soil-bentonite mixtures met the stipulated EPA criteria for the liners in the as-compacted state.However,the red soil-bentonite mixtures with 20%and 30%bentonite contents only satisfied the hydraulic conductivity requirement even after wet-dry cycles.The experimental findings were supplemented with the microstructural insights captured through digital camera images,scanning electron microscopy(SEM),and mercury intrusion porosimetry(MIP)studies. 展开更多
关键词 Compacted clay lines hydraulic conductivity Wet-dry cycles Microstructure
下载PDF
Effect of Irrigation Water Quality on Soil Hydraulic Conductivity 被引量:15
11
作者 XIAOZHEN-HUA B.PRENDERGAST 《Pedosphere》 SCIE CAS CSCD 1992年第3期237-244,共8页
The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the... The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the higher the electric conductivity (EC) of irrigation water,the higher the soil HC became.The soil HC doubled when EC increased from 0.1 to 6.0ds m^-1.High sodium-adsorption ratio(SAR) of irrigation water would have an unfavorable effect on soil HC.Soil HC decreased with the increasing of SAR,especially in the case of higher soil suction.An interaction existed between the effects of EC and SAR of irrigation water on soil HC.The HC of unsaturated soil dependent upon the macropores in surface soil decreased by one order of magnitude with 1 KPa increase of soil suction.In the study on the effect of very low soluble salt concentration (EC=0.1 ds m^-1 of irrigation water on soil HC,soil HC was found to be lowered by 30% as a consequence of blocking up of some continuous pores by the dispersed and migrated clay particles.Nonlinear successive regression analysis and significance test show that the effects of EC and SAR of irrigation water on soil HC reached the extremely significant level. 展开更多
关键词 electric conductivity hydraulic conductivity irrigation water quality sodium-adsorption ratio
下载PDF
Topographic differentiations of biological soil crusts and hydraulic properties in fixed sand dunes, Tengger Desert 被引量:14
12
作者 Zhi Shan ZHANG Yong Le CHEN +3 位作者 Bin Xing XU Lei HUANG Hui Juan TAN Xue Jun DONG 《Journal of Arid Land》 SCIE CSCD 2015年第2期205-215,共11页
Biological soil crusts (BSCs) play an important role in surface soil hydrology. Soils dominated with moss BSCs may have higher infiltration rates than those dominated with cyanobacteria or algal BSCs. However, it is... Biological soil crusts (BSCs) play an important role in surface soil hydrology. Soils dominated with moss BSCs may have higher infiltration rates than those dominated with cyanobacteria or algal BSCs. However, it is unnown whether improved infiltration in moss BSCs is accompanied by an increase in soil hydraulic conductivity or water retention capacity. We investigated this question in the Tengger Desert, where a 43-year-old revegetation program has promoted the formation of two distinct types of BSCs along topographic positions, i.e. the moss-dominated BSCs on the interdune land and windward slopes of the fixed sand dunes, and the al- gal-dominated BSCs on the crest and leeward slopes. Soil water retention capacity and hydraulic conductivity were measured using an indoor evaporation method and a field infiltration method. And the results were fitted to the van Genuchten-Mualem model. Unsaturated hydraulic conductivities under greater water pressure (〈-0.01 MPa) and water retention capacities in the entire pressure head range were higher for both crust types than for bare sand. However, saturated and unsaturated hydraulic conductivities in the near-saturation range (〉-0.01 MPa) showed decreasing trends from bare sand to moss crusts and to algal crusts. Our data suggested that topographic differentiation of BSCs significantly affected not only soil water retention and hydraulic conductivities, but also the overall hydrology of the fixed sand dunes at a landscape scale, as seen in the reduction and spatial variability in deep soil water storage. 展开更多
关键词 algal crusts hydraulic conductivity moss crusts soil water retention curve Tengger Desert
下载PDF
Effect of an Anionic Surfactant on Hydraulic Conductivities of Sodium- and Calcium-Saturated Soils 被引量:4
13
作者 RAO Pin-Hua HE Ming +3 位作者 YANG Xian ZHANG You-Chi SUN Shou-Qin WANG Jiang-Sheng 《Pedosphere》 SCIE CAS CSCD 2006年第5期673-680,共8页
The effect of sodium dodecylbenzenesulfonate (SDBS), an anionic surfactant used widely in household products and industrial processes, on saturated hydraulic conductivities (Ksat) of an Anthrosol saturated with sodium... The effect of sodium dodecylbenzenesulfonate (SDBS), an anionic surfactant used widely in household products and industrial processes, on saturated hydraulic conductivities (Ksat) of an Anthrosol saturated with sodium (Na-soil) or calcium (Ca-soil) was analyzed in a laboratory experiment using the constant head method, and adsorption and dispersion experiments were also conducted to infer the possible mechanisms of Ksat fluctuations. The results showed that SDBS was more intensely adsorbed in the Ca-soil than in the Na-soil. With an increase in the SDBS concentration, the stability of the Na-soil suspensions decreased when the SDBS concentration was less than 1.2 mmol L-1 and then above this concentration, increased markedly, while the stability of the Ca-soil suspensions increased gradually at all SDBS concentrations studied. With an increase in the SDBS concentration, the Ksat of the Na-soil increased, which resulted mainly from the increase of water channels in the soil because of the coagulation of the soil particles, while the Ksat of Ca-soil decreased mainly on account of the clogging of partial water channels by precipitated Ca(DBS)2 and the fine soil particles generated. 展开更多
关键词 ADSORPTION anionic surfactant calcium-saturated soil hydraulic conductivity sodium-saturated soil
下载PDF
A modified Kozeny-Carman equation for predicting saturated hydraulic conductivity of compacted bentonite in confined condition 被引量:5
14
作者 Kunlin Ruan Xian-Lei Fu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期984-993,共10页
Kozeny-Carman(KC) equation is a well-known relation between hydraulic conductivity and pore properties in porous material. The applications of KC equation to predicting saturated hydraulic conductivities of sands and ... Kozeny-Carman(KC) equation is a well-known relation between hydraulic conductivity and pore properties in porous material. The applications of KC equation to predicting saturated hydraulic conductivities of sands and non-expansive soils are well documented. However, KC equation is incapable of predicting saturated hydraulic conductivity of expansive soil(e.g. bentonite) well. Based on a new dualpore system, this study modified KC equation for improving the prediction of saturated hydraulic conductivities of bentonites. In this study, an assumption that inter-layer space(micropore) has limited effect on fluid flow performance of compacted bentonite was adopted. The critical parameters including total porosity and total tortuosity in conventional KC equation were replaced by macroporosity and tortuosity of macropore, respectively. Macroporosity and microporosity were calculated by basal spacing of compacted bentonite, which was estimated by assuming that specific surface area is changeable during saturation process. A comprehensive comparison of bentonite’s saturated hydraulic conductivity predictions, including modified KC equation proposed in this study, conventional KC equation, and prediction method based on diffuse double layer(DDL) theory, was carried out. It was found that the predicted saturated hydraulic conductivity of bentonites calculated using modified KC equation fitted the experimental data better than others to a certain extent. 展开更多
关键词 Kozenyecarman(KC)equation Saturated hydraulic conductivity BENTONITE Pore size distribution(PSD) Specific surface area
下载PDF
Integration of Tracer Test Data to Refine Geostatistical Hydraulic Conductivity Fields Using Sequential Self-Calibration Method 被引量:5
15
作者 胡晓农 蒋小伟 万力 《Journal of China University of Geosciences》 SCIE CSCD 2007年第3期242-256,共15页
On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the m... On the basis of local measurements of hydraulic conductivity, geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However, the methods are not suited to directly integrate dynamic production data, such as, hydraulic head and solute concentration, into the study of conductivity distribution. These data, which record the flow and transport processes in the medium, are closely related to the spatial distribution of hydraulic conductivity. In this study, a three-dimensional gradient-based inverse method--the sequential self-calibration (SSC) method--is developed to calibrate a hydraulic conductivity field, initially generated by a geostatistical simulation method, conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one, measured by its mean square error (MSE), is reduced through the SSC conditional study. In comparison with the unconditional results, the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve, and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further, the reduction of uncertainty is spatially dependent, which indicates that good locations, geological structure, and boundary conditions will affect the efficiency of the SSC study results. 展开更多
关键词 sequential self-calibration tracer test hydraulic conductivity geostatistical simulation inverse problem
下载PDF
Anisotropy of Soil Hydraulic Properties Along Arable Slopes 被引量:4
16
作者 JING Yuan-Shu ZHANG Bin +1 位作者 A. THIMM H. ZEPP 《Pedosphere》 SCIE CAS CSCD 2008年第3期353-362,共10页
The spatial variations of the soil hydraulic properties were mainly considered in vertical direction. The objectives of this study were to measure water-retention curves, θ(ψ), and unsaturated hydraulic conductivi... The spatial variations of the soil hydraulic properties were mainly considered in vertical direction. The objectives of this study were to measure water-retention curves, θ(ψ), and unsaturated hydraulic conductivity functions, K(ψ), of the soils sampled at different slope positions in three directions, namely, in vertical direction, along the slope and along the contour, and to determine the effects of sampling direction and slope position of two soil catenas. At the upper slope positions, the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content, 0, at a certain soil water potential (-1 500 kPa 〈 ψ 〈 -10 kPa) and had the greatest unsaturated hydraulic conductivity, K, at ψ 〉 -10 kPa. At the lower slope positions, K at ψ〉 -10 kPa was smaller in the vertical direction than in the direction along the slope. The deep soils (100 110 cm) had similar soil hydraulic properties in all the three directions. The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity. These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling. 展开更多
关键词 slope hydrology spatial variation unsaturated hydraulic conductivity water-retention curve
下载PDF
Determination of hydraulic conductivity of fractured rock masses:A case study for a rock cavern project in Singapore 被引量:3
17
作者 Zhipeng Xu Zhiye Zhao +1 位作者 Jianping Sun Ming Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第2期178-184,共7页
In order to reduce the risk associated with water seepage in an underground rock cavern project inSingapore, a reliable hydro-geological model should be established based on the in situ investigationdata. The key chal... In order to reduce the risk associated with water seepage in an underground rock cavern project inSingapore, a reliable hydro-geological model should be established based on the in situ investigationdata. The key challenging issue in the hydro-geological model building is how to integrate limitedgeological and hydro-geological data to determine the hydraulic conductivity of the fractured rockmasses. Based on the data obtained from different stages (feasibility investigation stage, constructionstage, and post-construction stage), suitable models and methods are proposed to determine the hydraulicconductivities at different locations and depths, which will be used at other locations in thefuture. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Rock caverns hydraulic conductivity Fractured rock masses Seepage analysis
下载PDF
Saturated anisotropic hydraulic conductivity of a compacted lateritic soil 被引量:3
18
作者 Roberto Aguiar dos Santos Edmundo Rogerio Esquivel 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期986-991,共6页
This study focuses on the saturated anisotropic hydraulic conductivity of a compacted lateritic clayey sandy soil. The effects of the molding water content and the confining stress on the anisotropic hydraulic conduct... This study focuses on the saturated anisotropic hydraulic conductivity of a compacted lateritic clayey sandy soil. The effects of the molding water content and the confining stress on the anisotropic hydraulic conductivity are investigated. The hydraulic conductivity is measured with a flexible-wall permeameter. Samples are dynamically compacted into the three compaction states of a standard Proctor compaction curve: the dry branch, optimum water content and wet branch. Depending on the molding water content and confining stress, the hydraulic conductivity may increase or decrease. In addition, the results indicate that, when the samples are compacted to the optimum water content, lower hydraulic conductivity is obtained, except at a confining stress equal to 50 kPa. The increase of the confining stress decreases the hydraulic conductivity for each of the evaluated compaction states. In the wet branch, horizontal hy- draulic conductivity is about 8 times higher than the vertical value. The anisotropic hydraulic conduc- tivities of the dry and wet branches decrease when the confining stress increases, and the opposite is observed in the optimum water content state. 展开更多
关键词 hydraulic conductivity Anisotropic behavior Lateritic soil Tropical soil Compacted soil
下载PDF
Spatial variability of soil hydraulic conductivity and runoff generation types in a small mountainous catchment 被引量:2
19
作者 YANG Yong CHEN Ren-sheng +3 位作者 SONG Yao-xuan HAN Chun-tan LIU Zhang-wen LIU Jun-feng 《Journal of Mountain Science》 SCIE CSCD 2020年第11期2724-2741,共18页
As an important soil property,saturated hydraulic conductivity(Ks)controls many hydrological processes,such as runoff generation types,soil moisture storage and water movement.Because of the extremely harsh natural en... As an important soil property,saturated hydraulic conductivity(Ks)controls many hydrological processes,such as runoff generation types,soil moisture storage and water movement.Because of the extremely harsh natural environmental conditions and soil containing a significant fraction of gravel fragments in high-elevation mountainous catchments,the measurement data of Ks and other soil properties are seriously lacking,which leads to poor understanding on its hydrological processes and water cycle.In this study,the vertical variation(0-150 cm)of Ks and other soil properties from 38 soil profiles were measured under five different land cover types(alpine barren,forest,marshy meadow,alpine shrub and alpine meadow)in a small catchment in Qilian Mountains,northwestern China.A typical characteristic of soil in mountainous areas is widespread presence of rock and gravel,and the results showed that the more rock and gravel in the soil,the higher Ks and bulk density and the lower the soil capillary porosity,field water capacity and total porosity.The Ks of the lower layer with rock and gravel(18.49±10.22 mm·min-1)was significantly higher than that of the upper layer with relatively fine textured soil(0.18±0.18 mm·min-1).The order of values of the Ks in different land cover types was alpine barren,forest,alpine shrub,marshy meadow and alpine meadow,and the values of the Ks in the alpine barren were significantly higher than those of other land covers.Most rainfall events in the research catchment had low rain intensity(<0.04 mm·min-1),and deep percolation(DP)was the dominant runoff generation type.When the rainfall intensity increased(0.11 mm·min-1),subsurface stormflow(SSF)appeared in the alpine meadow.Infiltration excess overland flow(IOF),SSF and DP existed simultaneously only when the rainfall intensity was extremely high(1.91 mm·min-1).IOF and SSF were almost never appeared in the alpine barren because of high Ks.The alpine barren was the main runoffcontributed area in the mountainous catchment because of high Ks and low water-holding capacity,and the alpine shrub and meadow showed more ecological functions such as natural water storage and replenishment pool than contribution of runoff. 展开更多
关键词 Saturated hydraulic conductivity Rock fragment Land cover Runoff generation Mountain catchment
下载PDF
Temperature Effects on Unsaturated Hydraulic Property of Bentonite-Sand Buffer Backfilling Mixtures 被引量:2
20
作者 张明 张虎元 +1 位作者 ZHOU Lang JIA Lingyan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期487-493,共7页
The influence of temperature on the engineered properties of bentonite-sand mixtures (B/S) is of major concern in the design of engineered barriers in underground repositories for high-level radioactive waste dispos... The influence of temperature on the engineered properties of bentonite-sand mixtures (B/S) is of major concern in the design of engineered barriers in underground repositories for high-level radioactive waste disposal. We experimentally studied the influence of temperature on soil unsaturated hydraulic properties related to water holding capacity and permeability of GMZ B/S in China. The vapor equilibrium method and water infiltration apparatus were used to measure the soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (k). The results show that the SWCC under different temperatures from 20℃ to 60 ℃ tends to be the same. Temperature influence on unsaturated permeability is more relevant at low suctions, no clear effect is detected below a degree of saturation of 74%, and experimental data show that temperature dependence on unsaturated permeability is small. 展开更多
关键词 high-level radioactive waste disposal engineered barrier temperature soil water characteristic curve unsaturated hydraulic conductivity
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部