期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A study on the hydraulics of waste stabilization pond
1
作者 Wen Xianghua and Qian YiResearch Center for Eco-Environmental Sicences,Academia Sinica,Beijing 100083,ChinaDepartment of Environnmental Engineering,Tsinghua University,Beijing 100084,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1991年第2期75-88,共14页
In this study, tracer tests and organic removal tests were conducted on three different ponds in the purpose of evaluating the influence of the flow velocity and dispersion on the hydraulic efficiency of the pond. The... In this study, tracer tests and organic removal tests were conducted on three different ponds in the purpose of evaluating the influence of the flow velocity and dispersion on the hydraulic efficiency of the pond. The authors have compared the hydraulic flow patterns among ponds with different configurations. Experimental and theoretical analyses were performed. This study indicated that the flow characteristics of square ponds are different from that of baffled ponds; the flow velocity and dispersion are equally important factors which affect the pond hydraulics; the number of inserting baffles can be optimized; and the hydraulic efficiency of multistage ponds is superior to that of baffled ponds. 展开更多
关键词 stabilization pond hydraulic characteristic hydraulic efficiency tracer test.
下载PDF
Variants of Secondary Control with Power Recovery for Loading Hydraulic Driving Device 被引量:4
2
作者 LI Wanguo FU Yongling +1 位作者 CHEN Juan QI Xiaoye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期618-633,共16页
Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and thos... Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and those with high dynamic performance typically have low energy efficiency. In this paper, the variants of secondary control(VSC) with power recovery are developed to solve this problem for loading hydraulic driving devices that operate under variable pressure, unlike classical secondary control(CSC) that operates in constant pressure network. Hydrostatic secondary control units are used as the loading components, by which the absorbed mechanical power from the tested device is converted into hydraulic power and then fed back into the tested system through 4 types of feedback passages(FPs). The loading subsystem can operate in constant pressure network, controlled variable pressure network, or the same variable pressure network as that of the tested device by using different FPs. The 4 types of systems are defined, and their key techniques are analyzed, including work principle, simulating the work state of original tested device, static operation points, loading performance, energy efficiency, and control strategy, etc. The important technical merits of the 4 schemes are compared, and 3 of the schemes are selected, designed, simulated using AMESim and evaluated. The researching results show that the investigated systems can simulate the given loads effectively, realize the work conditions of the tested device, and furthermore attain a high power recovery efficiency that ranges from 0.54 to 0.85, even though the 3 schemes have different loading performances and energy efficiencies. This paper proposes several loading schemes that can achieve both high dynamic performance and high power recovery efficiency. 展开更多
关键词 load simulator variants of secondary control power recovery efficiency energy regeneration hydraulic driving device simulation A
下载PDF
Safety-efficiency trade-offs in the cotton xylem:acclimatization to different soil textures 被引量:1
3
作者 WANG Zhongyuan XIE Jiangbo LI Yan 《Journal of Arid Land》 SCIE CSCD 2016年第3期443-452,共10页
The acclimatization of plant xylem to altered environmental conditions has attracted considerable attention from researchers over several decades. Plants growing in natural environments must seek a balance between wat... The acclimatization of plant xylem to altered environmental conditions has attracted considerable attention from researchers over several decades. Plants growing in natural environments must seek a balance between water uptake and the water loss of leaves from evaporation. Thus, the adaptation of xylem to different soil textures is important in maintaining plant water balance. In this study, we investigated the xylem changes of cotton(Gossypium herbaceum L.) xylem in sandy, clay and mixed soils. Results showed that soil texture had a significant effect on xylem vessel diameter and length of stems and roots. Compared with G. herbaceum growing in the clay soil, those plants growing in the sandy soil developed narrower and shorter xylem vessels in their roots, and had a higher percentage of narrow vessels in their stems. These changes resulted in a safer(i.e. less vulnerable to cavitation), but less-efficient water transport system when soil water availability was low, supporting the hydraulic safety versus efficiency trade-off hypothesis. Furthermore, in sandy and mixed soils, the root: shoot ratio of G. herbaceum increased twofold, which ensures the same efficiency of leaves. In summary, our finding indicates that the morphological plasticity of xylem structure in G. herbaceum has a major role in the acclimatization of this plant species to different soil textures. 展开更多
关键词 acclimatization soil texture xylem structure hydraulic acclimation safety vs. efficiency
下载PDF
GAS AND OIL POWER DISTRIBUTION RATIO OF A NEW HYDRAULIC BREAKER
4
作者 ZHAO Hongqiang LI Meixiang GAO Bin HE Qinghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期54-58,共5页
The working principle of a new hydraulic breaker operated jointly by gas and hydraulic flow which has a reasonable structure, high efficiency and long piston life-span, is analyzed, and the optimal power distribution ... The working principle of a new hydraulic breaker operated jointly by gas and hydraulic flow which has a reasonable structure, high efficiency and long piston life-span, is analyzed, and the optimal power distribution ratio of the sealed nitrogen gas to the high-pressure oil in the process of piston impacting is studied. Through theoretical analysis, optimization simulation and detailed calculation, it is determined that the impact system has optimal mechanical performance and highest efficiency when the distribution ratio φ is between 0.3 and 0.5. The theoretical result is also verified by repeated tests. 展开更多
关键词 hydraulic breaker Power Distribution ratio efficiency
下载PDF
A FAST LAGRANGIAN SIMULATION METHOD FOR FLOW ANALYSIS AND RUNNER DESIGN IN PELTON TURBINES 被引量:6
5
作者 ANAGNOSTOPOULOS John S. PAPANTONIS Dimitris E. 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第6期930-941,共12页
In the present work, an alternative numerical methodology is developed for a fast and effective simulation and analysis of the complex flow and energy conversion in Pelton impulse hydro turbines. The algorithm is base... In the present work, an alternative numerical methodology is developed for a fast and effective simulation and analysis of the complex flow and energy conversion in Pelton impulse hydro turbines. The algorithm is based on the Lagrangian approach and the unsteady free-surface flow during the jet-bucket interaction is simulated by tracking the trajectories of representative fluid particles at very low computer cost. Modern regression tools are implemented in a new parameterization technique of the inner bucket surface. Key-feature of the model is the introduction of additional terms into the particle motion equations to account for various hydraulic losses and the flow spreading, which are regulated and evaluated with the aid of experimental data in a Laboratory Pelton turbine. The model is applied to study the jet-runner interaction in various operation conditions and then to perform numerical design optimization of the bucket shape, using a stochastic optimizer based on evolutionary algorithms. The obtained optimum runner attains remarkably higher hydraulic efficiency in the entire load range. Finally, a new small Pelton turbine (150 kW) is designed, manufactured and tested in the Laboratory, and its performance and efficiency verify the model predictions. 展开更多
关键词 Pelton turbine hydraulic efficiency Lagrangian simulation bucket shape parameterization numerical design optimization
原文传递
Master equation and runaway speed of the Francis turbine 被引量:1
6
作者 Zh.Zhang 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第2期203-217,共15页
The master equation of the Francis turbine is derived based on the combination of the angular momentum(Euler) and the energy laws. It relates the geometrical design of the impeller and the regulation settings(guide... The master equation of the Francis turbine is derived based on the combination of the angular momentum(Euler) and the energy laws. It relates the geometrical design of the impeller and the regulation settings(guide vane angle and rotational speed) to the discharge and the power output. The master equation, thus, enables the complete characteristics of a given Francis turbine to be easily computed. While applying the energy law, both the shock loss at the impeller inlet and the swirling loss at the impeller exit are taken into account. These are main losses which occur at both the partial load and the overloads and, thus, dominantly influence the characteristics of the Francis turbine. They also totally govern the discharge of the water through the impeller when the impeller is found in the standstill. The computations have been performed for the discharge, the hydraulic torque and the hydraulic efficiency. They were also compared with the available measurements on a model turbine. Excellent agreement has been achieved. The computations also enable the runaway speed of the Francis turbine and the related discharge to be determined as a function of the setting angle of the guide vanes. 展开更多
关键词 Francis turbine master equation runaway speed hydraulic efficiency shock loss swirling loss streamline similarity method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部