期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stress-unloading and gas migration improvement mechanism in the soft and hard interbedded coal seam using directional hydraulic flushing technology 被引量:1
1
作者 Hao Zhang Yuanping Cheng +5 位作者 Cunbao Deng Jingyu Jiang Lei Zhang Xiaoyu Yan Junwei Guo Suifang Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第9期1165-1179,共15页
To enhance gas drainage in the soft and hard interbedded(SHI)coal seam,it’s necessary to unload the insitu stress and improve its gas migration performance.In this research,a directional hydraulic flushing(DHF)techno... To enhance gas drainage in the soft and hard interbedded(SHI)coal seam,it’s necessary to unload the insitu stress and improve its gas migration performance.In this research,a directional hydraulic flushing(DHF)technology was carried out.The stress-unloading and gas migration improvement mechanism was analyzed through numerical simulation,and systematic engineering tests were conducted to verify the gas drainage effect.The results show that the improvement of gas migration performance in the SHI coal seam is caused by a combined effect of seepage-improving and diffusion-improving.After DHF,stress-unloading and plastic failure could be achieved both in the soft coal(SC)sublayer and in the hard coal(HC)sublayer.However,the gas diffusion capacity improves significantly in the SC sublayer,while the gas seepage capacity improves notably in the HC sublayer.Meanwhile,the stress-unloading and gas migration improvement effect improves with the flushing radius and the thickness of the SC sublayer.Besides,after adopting the DHF technology,the gas drainage effect improved markedly.The borehole number dropped by 49%,the gas drainage ratio increased from 26.0%to 48.2%,and the average coal roadway excavation speed increased from 2.4 to 5.6 m/d. 展开更多
关键词 hydraulic flushing Stress-unloading Plastic failure Permeability-increasing Gas migration
下载PDF
Influence of combination forms of intact sub-layer and tectonically deformed sub-layer of coal on the gas drainage performance of boreholes: a numerical study 被引量:3
2
作者 Wei Zhao Kai Wang +3 位作者 Rong Zhang Huzi Dong Zhen Lou Fenghua An 《International Journal of Coal Science & Technology》 EI 2020年第3期571-580,共10页
High concentration and large flow flux of gas drainage from underground coal seams is the precondition of reducing emission and large-scale use of gas.However,the layered occurrence of coal seams with tectonically def... High concentration and large flow flux of gas drainage from underground coal seams is the precondition of reducing emission and large-scale use of gas.However,the layered occurrence of coal seams with tectonically deformed sub-layers and intact sub-layers makes it difficult to effectively drain gas through commonly designed boreholes.In this study,the gas drainage performance in coal seams with different combinations of tectonically deformed sub-layers and intact sub-layers was numerically analyzed.The analysis results show that the gas drainage curve changes from a single-stage line to a dual-stage curve as the permeability ratios of Zone II(kII)and Zone I(kI)increase,raising the difficulty in gas drainage.Furthermore,a dual-system pressure decay model based on the first-order kinetic model was developed to describe the dual-stage characteristics of pressure decay curves with different permeability ratios.In the end,the simulation results were verified with reference to in-situ drainage data from literature.The research results are helpful for mines,especially those with layered coal seams comprising tectonically deformed sub-layers and intact sub-layers,to choose appropriate gas drainage methods and develop the original drainage designs for achieving better gas drainage performance. 展开更多
关键词 Tectonically deformed coal Pressure decay Permeability hydraulic flushing boreholes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部