In order to observe the change and fluctuation in flow and pressure of a hydraulic quadruped robot's hydraulic system when the robot walks on trot gait,a co-simulation method based on ADAMS and AMESim is proposed. Fi...In order to observe the change and fluctuation in flow and pressure of a hydraulic quadruped robot's hydraulic system when the robot walks on trot gait,a co-simulation method based on ADAMS and AMESim is proposed. Firstly,the change rule in each swing angle of the hydraulic quadruped robot's four legs is analyzed and converted to the displacement change of the hydraulic cylinder by calculating their geometric relationship.Secondly,the robot's dynamic model is built in ADAMS and its hydraulic and control system models are built in AMESim. The displacement change of the hydraulic cylinder in the hydraulic system is used as the driving function of the dynamics model in ADAMS,and the driving force of the dynamics model is used as the loads of the hydraulic system in AMESim. By introducing the PID closed-loop control in the control system,the co-simulation between hydraulic system and mechanical system is implemented. Finally,the curve of hydraulic cylinders' loads,flow and pressure are analyzed and the results show that they fluctuate highly in accordance with the real situation. The study provides data support for the development of a hydraulic quadruped robot's physical prototype.展开更多
In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order ...In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.展开更多
Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time...Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.展开更多
In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(R...In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(RSM).First,output torque,torque constant,torque ripple,and efficiency were selected as objective functions for the optimized design.The sampling method was implemented to use a mixed orthogonal array and the single response characteristics of each objective function were compared using the Taguchi method.Moreover,to consider the multi-response characteristic of the objective functions,WSM was applied.Second,the 2D finite element analysis result of the RSM was compared with that using the WSM.Finally,an experiment was carried out on the manufactured motor and the optimized model is presented here.展开更多
This paper describes the basic structure and design and operation principle of the hydraulic drive and control system with two pumps and two circuits. The manipulator of the cone collecting robot designed is full driv...This paper describes the basic structure and design and operation principle of the hydraulic drive and control system with two pumps and two circuits. The manipulator of the cone collecting robot designed is full driven by hydraulic, which has five freedoms. The computer and electrohydraulic proportion velocity regulating valve were installed to realize open loop serve control for reducing cost and easy application.展开更多
In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion....In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion.To meet both demands,ajoint space compliance controller is designed,so that compliance can be achieved in stance phase while position tracking performance can be guaranteed in swing phase.Unlike operational space compliance control,the joint space compliance control method is easy to implement and does not depend on robot dynamics.As for each joint actuator,high performance force control is of great importance for compliance design.Therefore,a nonlinear PI controller based on feedback linearization is proposed for the hydraulic actuator force control.Besides,an outer position loop(compliance loop)is closed for each joint.Experiments are carried out to verify the force controller and compliance of the hydraulic actuator.The robot leg compliance is assessed by a virtual prototyping simulation.展开更多
A prototype of hydraulically powered quadruped robot is presented. The aim of the research is to develop a versatile robot platform which could travel fleetly in outdoor terrain with long time of en- durance and high ...A prototype of hydraulically powered quadruped robot is presented. The aim of the research is to develop a versatile robot platform which could travel fleetly in outdoor terrain with long time of en- durance and high load carrying ability. The current version is 1. lm long and 0.48m wide, and weights about 150kg. Each leg has four rotational joints driven by hydraulic cylinders and one pas- sive translational joint with spring. The torso carries the control system and the power system. A no- vel control algorithm is developed based on a Spring-Loaded Inverted Pendulum model and the prin- ciple of joint function separation. The robot can not only cross a 150mm high obstacle in static gait and trot at 2.5km/h and l km/h on the level-ground and 10°sloped-terrain respectively, but also au- tomatically keep balanced under lateral disturbance. In this paper, the mechanical structure and control systems are also discussed. Simulations and experiments are carried out to validate the design and algorithms.展开更多
The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order ...The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order to accomplish a precise task, the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment. A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting on fork glove. Namely, the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston, and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder. Moreover, the variable gain improved algorithm is developed to overcome the defect for grasping soft object. Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object.展开更多
Design and manufacturing play pivotal roles in hydraulic-driven robotic development.However,previous studies have emphasized mainly results and performance,often overlooking the specifics of the design and manufacturi...Design and manufacturing play pivotal roles in hydraulic-driven robotic development.However,previous studies have emphasized mainly results and performance,often overlooking the specifics of the design and manufacturing process.This paper introduces a novel approach known as light weight design and integrated manufacturing(LD&IM)for hydraulic wheel-legged robots.The LD&IM method leverages topology optimization and generative design techniques to achieve a substantial 45%weight reduction,enhancing the robot’s dynamic motion capabilities.This innovative design method not only streamlines the design process but also upholds the crucial attributes of light weight construction and high strength essential for hydraulic wheel-legged robots.Furthermore,the integrated manufacturing method,incorporating selective laser melting(SLM)and high-precision subtractive manufacturing(SM)processes,expedites the fabrication of high-quality components.Using the LD&IM approach,a hydraulic-driven single wheel-legged robot,denoted as WLR-IV,has been successfully developed.This robot boasts low mass and inertia,high strength,and a simplified component structure.To assess its dynamic jumping capabilities,the control loop integrates a linear quadratic regulator(LQR)and zero dynamic-based controller,while trajectory planning uses the spring-loaded inverted pendulum(SLIP)model.Experimental jumping results confirm the WLR-IV single-legged robot’s exceptional dynamic performance,validating both the effectiveness of the LD&IM method and the rationale behind the control strategy.展开更多
Herein,a control method based on the optimal energy efficiency of a hydraulic quadruped robot was proposed,which not only realizes the optimal energy efficiency of flying trot gait but also ensures the stability of hi...Herein,a control method based on the optimal energy efficiency of a hydraulic quadruped robot was proposed,which not only realizes the optimal energy efficiency of flying trot gait but also ensures the stability of high-speed movement.Concretely,the energy consumption per unit distance was adopted as the energy efficiency evaluation index based on the constant pressure oil supply characteristics of the hydraulic system,and the global optimization algorithm was adopted to solve the optimal parameters.Afterward,the gait parameters that affect the energy efficiency of quadruped were analyzed and the mapping relationship between each parameter and energy efficiency was captured,so as to select the optimum combination of energy efficiency parameters,which is significant to improve endurance capability.Furthermore,to ensure the stability of the high-speed flying trot gait motion of the hydraulic quadruped robot,the active compliance control strategy was employed.Lastly,the proposed method was successfully verified by simulations and experiments.The experimental results reveal that the flying trot gait of the hydraulic quadruped robot can be stably controlled at a speed of 2.2 m/s.展开更多
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
As a typical bionic walking robot, hydraulic quadruped robot has attracted much attention because of its high mobility, strong load capacity and steady motion. The electro-hydraulic servo cylinder, as its power actuat...As a typical bionic walking robot, hydraulic quadruped robot has attracted much attention because of its high mobility, strong load capacity and steady motion. The electro-hydraulic servo cylinder, as its power actuator, requires low friction, good lateral load resistance and high speed motion. The electro-hydraulic servo cylinder hydrostatic bearing seal guide sleeve is taken as the research object in this paper. By using Fluent software to analyze and contrast the film characteristics of rectangular and I-shaped oil chamber of hydrostatic bearing seal guide sleeve, the relationship between piston rod moving speed, eccentricity, oil film carrying capacity, friction force and leakage volume, as well as the relationship between oil feed flow and oil film bearing capacity, friction force, inlet pressure and leakage volume were analyzed. This study provides a theoretical basis for optimizing the static pressure bearing seal parameters.展开更多
文摘In order to observe the change and fluctuation in flow and pressure of a hydraulic quadruped robot's hydraulic system when the robot walks on trot gait,a co-simulation method based on ADAMS and AMESim is proposed. Firstly,the change rule in each swing angle of the hydraulic quadruped robot's four legs is analyzed and converted to the displacement change of the hydraulic cylinder by calculating their geometric relationship.Secondly,the robot's dynamic model is built in ADAMS and its hydraulic and control system models are built in AMESim. The displacement change of the hydraulic cylinder in the hydraulic system is used as the driving function of the dynamics model in ADAMS,and the driving force of the dynamics model is used as the loads of the hydraulic system in AMESim. By introducing the PID closed-loop control in the control system,the co-simulation between hydraulic system and mechanical system is implemented. Finally,the curve of hydraulic cylinders' loads,flow and pressure are analyzed and the results show that they fluctuate highly in accordance with the real situation. The study provides data support for the development of a hydraulic quadruped robot's physical prototype.
基金Projects(51975376,51505289)supported by the National Natural Science Foundation of ChinaProject(19ZR1435400)supported by the Natural Science Foundation of Shanghai,China。
文摘In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.
基金Supported by the Ministerial Level Advanced Research Foundation(65822576)
文摘Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.
基金supported by the Industrial Strategic Technology Development Program(10070171,Development of core technology for advanced locomotion/manipulation based on high-speed/power robot platform and robot intelligence)funded By the Ministry of Trade,Industry&Energy(MI,Korea).
文摘In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(RSM).First,output torque,torque constant,torque ripple,and efficiency were selected as objective functions for the optimized design.The sampling method was implemented to use a mixed orthogonal array and the single response characteristics of each objective function were compared using the Taguchi method.Moreover,to consider the multi-response characteristic of the objective functions,WSM was applied.Second,the 2D finite element analysis result of the RSM was compared with that using the WSM.Finally,an experiment was carried out on the manufactured motor and the optimized model is presented here.
文摘This paper describes the basic structure and design and operation principle of the hydraulic drive and control system with two pumps and two circuits. The manipulator of the cone collecting robot designed is full driven by hydraulic, which has five freedoms. The computer and electrohydraulic proportion velocity regulating valve were installed to realize open loop serve control for reducing cost and easy application.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA041002)
文摘In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion.To meet both demands,ajoint space compliance controller is designed,so that compliance can be achieved in stance phase while position tracking performance can be guaranteed in swing phase.Unlike operational space compliance control,the joint space compliance control method is easy to implement and does not depend on robot dynamics.As for each joint actuator,high performance force control is of great importance for compliance design.Therefore,a nonlinear PI controller based on feedback linearization is proposed for the hydraulic actuator force control.Besides,an outer position loop(compliance loop)is closed for each joint.Experiments are carried out to verify the force controller and compliance of the hydraulic actuator.The robot leg compliance is assessed by a virtual prototyping simulation.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA040701)
文摘A prototype of hydraulically powered quadruped robot is presented. The aim of the research is to develop a versatile robot platform which could travel fleetly in outdoor terrain with long time of en- durance and high load carrying ability. The current version is 1. lm long and 0.48m wide, and weights about 150kg. Each leg has four rotational joints driven by hydraulic cylinders and one pas- sive translational joint with spring. The torso carries the control system and the power system. A no- vel control algorithm is developed based on a Spring-Loaded Inverted Pendulum model and the prin- ciple of joint function separation. The robot can not only cross a 150mm high obstacle in static gait and trot at 2.5km/h and l km/h on the level-ground and 10°sloped-terrain respectively, but also au- tomatically keep balanced under lateral disturbance. In this paper, the mechanical structure and control systems are also discussed. Simulations and experiments are carried out to validate the design and algorithms.
基金supported by National Natural Science Foundation of China(No.50475011).
文摘The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order to accomplish a precise task, the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment. A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting on fork glove. Namely, the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston, and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder. Moreover, the variable gain improved algorithm is developed to overcome the defect for grasping soft object. Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object.
基金Heilongjiang Provincial Youth Science and Technology Talent Support Project(No.2023QNTJ008)Self-Planned Task of State Key Laboratory of Robotics and System from Harbin Institute of Technology(HIT)(No.SKLRS 202301A03)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(No.GZKF-202203),China.
文摘Design and manufacturing play pivotal roles in hydraulic-driven robotic development.However,previous studies have emphasized mainly results and performance,often overlooking the specifics of the design and manufacturing process.This paper introduces a novel approach known as light weight design and integrated manufacturing(LD&IM)for hydraulic wheel-legged robots.The LD&IM method leverages topology optimization and generative design techniques to achieve a substantial 45%weight reduction,enhancing the robot’s dynamic motion capabilities.This innovative design method not only streamlines the design process but also upholds the crucial attributes of light weight construction and high strength essential for hydraulic wheel-legged robots.Furthermore,the integrated manufacturing method,incorporating selective laser melting(SLM)and high-precision subtractive manufacturing(SM)processes,expedites the fabrication of high-quality components.Using the LD&IM approach,a hydraulic-driven single wheel-legged robot,denoted as WLR-IV,has been successfully developed.This robot boasts low mass and inertia,high strength,and a simplified component structure.To assess its dynamic jumping capabilities,the control loop integrates a linear quadratic regulator(LQR)and zero dynamic-based controller,while trajectory planning uses the spring-loaded inverted pendulum(SLIP)model.Experimental jumping results confirm the WLR-IV single-legged robot’s exceptional dynamic performance,validating both the effectiveness of the LD&IM method and the rationale behind the control strategy.
文摘Herein,a control method based on the optimal energy efficiency of a hydraulic quadruped robot was proposed,which not only realizes the optimal energy efficiency of flying trot gait but also ensures the stability of high-speed movement.Concretely,the energy consumption per unit distance was adopted as the energy efficiency evaluation index based on the constant pressure oil supply characteristics of the hydraulic system,and the global optimization algorithm was adopted to solve the optimal parameters.Afterward,the gait parameters that affect the energy efficiency of quadruped were analyzed and the mapping relationship between each parameter and energy efficiency was captured,so as to select the optimum combination of energy efficiency parameters,which is significant to improve endurance capability.Furthermore,to ensure the stability of the high-speed flying trot gait motion of the hydraulic quadruped robot,the active compliance control strategy was employed.Lastly,the proposed method was successfully verified by simulations and experiments.The experimental results reveal that the flying trot gait of the hydraulic quadruped robot can be stably controlled at a speed of 2.2 m/s.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
基金supported by the National 863 Project(2011AA040701)
文摘As a typical bionic walking robot, hydraulic quadruped robot has attracted much attention because of its high mobility, strong load capacity and steady motion. The electro-hydraulic servo cylinder, as its power actuator, requires low friction, good lateral load resistance and high speed motion. The electro-hydraulic servo cylinder hydrostatic bearing seal guide sleeve is taken as the research object in this paper. By using Fluent software to analyze and contrast the film characteristics of rectangular and I-shaped oil chamber of hydrostatic bearing seal guide sleeve, the relationship between piston rod moving speed, eccentricity, oil film carrying capacity, friction force and leakage volume, as well as the relationship between oil feed flow and oil film bearing capacity, friction force, inlet pressure and leakage volume were analyzed. This study provides a theoretical basis for optimizing the static pressure bearing seal parameters.