期刊文献+
共找到294篇文章
< 1 2 15 >
每页显示 20 50 100
The role of natural fracture activation in hydraulic fracturing for deep unconventional geo-energy reservoir stimulation
1
作者 Jun Wang He-Ping Xie +2 位作者 Stephan KMatthai Jian-Jun Hu Cun-Bao Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2141-2164,共24页
The presence of sealed or semi-sealed,multiscale natural fracture systems appears to be crucial for the successful stimulation of deep reservoirs.To explore the reaction of such systems to reservoir stimulation,a new ... The presence of sealed or semi-sealed,multiscale natural fracture systems appears to be crucial for the successful stimulation of deep reservoirs.To explore the reaction of such systems to reservoir stimulation,a new numerical simulation approach for hydraulic stimulation has been developed,trying to establish a realistic model of the physics involved.Our new model successfully reproduces dynamic fracture activation,network generation,and overall reservoir permeability enhancement.Its outputs indicate that natural fractures facilitate stimulation far beyond the near-wellbore area,and can significantly improve the hydraulic conductivity of unconventional geo-energy reservoirs.According to our model,the fracture activation patterns are jointly determined by the occurrence of natural fractures and the in situ stress.High-density natural fractures,high-fluid pressure,and low effective stress environments promote the formation of complex fracture networks during stimulation.Multistage or multicluster fracturing treatments with an appropriate spacing also increase the stimulated reservoir area(SRA).The simulation scheme demonstrated in this work offers the possibility to elucidate the complex multiphysical couplings seen in the field through detailed site-specific modeling. 展开更多
关键词 natural fractures DFM Unconventional geo-energy reservoir fracture reactivation hydraulic stimulation
下载PDF
Mutual impact of true triaxial stress, borehole orientation and bedding inclination on laboratory hydraulic fracturing of Lushan shale 被引量:1
2
作者 Yongfa Zhang Anfa Long +2 位作者 Yu Zhao Arno Zang Chaolin Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3131-3147,共17页
Unconventional resources like shale gas has been the focus of intense research and development for two decades. Apart from intrinsic geologic factors that control the gas shale productivity (e.g. organic matter conten... Unconventional resources like shale gas has been the focus of intense research and development for two decades. Apart from intrinsic geologic factors that control the gas shale productivity (e.g. organic matter content, bedding planes, natural fractures, porosity and stress regime among others), external factors like wellbore orientation and stimulation design play a role. In this study, we present a series of true triaxial hydraulic fracturing experiments conducted on Lushan shale to investigate the interplay of internal factors (bedding, natural fractures and in situ stress) and external factors (wellbore orientation) on the growth process of fracture networks in cubic specimens of 200 mm in length. We observe relatively low breakdown pressure and fracture propagation pressure as the wellbore orientation and/or the maximum in situ stress is subparallel to the shale bedding plane. The wellbore orientation has a more prominent effect on the breakdown pressure, but its effect is tapered with increasing angle of bedding inclination. The shale breakdown is followed by an abrupt response in sample displacement, which reflects the stimulated fracture volume. Based on fluid tracer analysis, the morphology of hydraulic fractures (HF) is divided into four categories. Among the categories, activation of bedding planes (bedding failure, BF) and natural fractures (NF) significantly increase bifurcation and fractured areas. Under the same stress regime, a horizontal wellbore is more favorable to enhance the complexity of hydraulic fracture networks. This is attributed to the relatively large surface area in contact with the bedding plane for the horizontal borehole compared to the case with a vertical wellbore. These findings provide important references for hydraulic fracturing design in shale reservoirs. 展开更多
关键词 True triaxial hydraulic fracturing experiment In situ stress state Bedding planes natural fractures Wellbore orientation Shale reservoirs
下载PDF
Numerical Modeling of Natural Fracture Distributions in Shale
3
作者 LI Yaping CHEN Xiaowei SHAO Yongbo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期828-840,共13页
The production efficiency of shale gas is affected by the interaction between hydraulic and natural fractures.This study presents a simulation of natural fractures in shale reservoirs,based on a discrete fracture netw... The production efficiency of shale gas is affected by the interaction between hydraulic and natural fractures.This study presents a simulation of natural fractures in shale reservoirs,based on a discrete fracture network(DFN)method for hydraulic fracturing engineering.Fracture properties of the model are calculated from core fracture data,according to statistical mathematical analysis.The calculation results make full use of the quantitative information of core fracture orientation,density,opening and length,which constitute the direct and extensive data of mining engineering.The reliability and applicability of the model are analyzed with regard to model size and density,a calculation method for dominant size and density being proposed.Then,finite element analysis is applied to a hydraulic fracturing numerical simulation of a shale fractured reservoir in southeastern Chongqing.The hydraulic pressure distribution,fracture propagation,acoustic emission information and in situ stress changes during fracturing are analyzed.The results show the application of fracture statistics in fracture modeling and the influence of fracture distribution on hydraulic fracturing engineering.The present analysis may provide a reference for shale gas exploitation. 展开更多
关键词 SHALE CORE natural fracture discrete fracture network(DFN) hydraulic fracturing
下载PDF
Effect of hydraulic fracturing induced stress field on weak surface activation during unconventional reservoir development
4
作者 Jie Bai Xiao-Qiong Wang +2 位作者 Hong-Kui Ge Hu Meng Ye-Qun Wen 《Petroleum Science》 SCIE EI CSCD 2023年第5期3119-3130,共12页
Unconventional reservoirs usually contain many weak surfaces such as faults,laminae and natural fractures,and effective activation and utilization of these weak surfaces in reservoirs can significantly improve the ext... Unconventional reservoirs usually contain many weak surfaces such as faults,laminae and natural fractures,and effective activation and utilization of these weak surfaces in reservoirs can significantly improve the extraction effect.In hydraulic fracturing,when the artificial fracture approaches the natural fracture,the natural fracture would be influenced by both the original in-situ stress field and the hydraulic fracturing-induced stress field.In this paper,the hydraulic fracturing-induced stress field is calculated based on the relative position of hydraulic fracture and natural fracture,the original in-situ stress,the net pressure inside the hydraulic fracture and the pore pressure of the formation.Furthermore,the stability model of the natural fracture is established by combining the Mohr-Coulomb rupture criterion,and extensive parametric studies are conducted to explore the impact of each parameter on the stability of the natural fracture.The validity of the proposed model is verified by comparing with the reservoir characteristics and fracturing process of the X-well 150e155 formation in the Songliao Basin.It is found that the stress field induced by the hydraulic fracture inhibits the activation of the natural fracture after the artificial fracture crossed the natural fracture.Therefore,for similar reservoirs as X-well 150e155,it is suggested to connect natural fractures with hydraulic fractures first and then activate natural fractures which can effectively utilize the natural fractures and form a complex fracture network. 展开更多
关键词 hydraulic fracturing Induced stress field Weak surface natural fracture stability fracturing characteristics
下载PDF
Understanding hydraulic fracture propagation behavior in tight sandstone–coal interbedded formations: an experimentalinvestigation 被引量:16
5
作者 Peng Tan Yan Jin +4 位作者 Liang Yuan Zhen-Yu Xiong Bing Hou Mian Chen Li-Ming Wan 《Petroleum Science》 SCIE CAS CSCD 2019年第1期148-160,共13页
Whether hydraulic fractures could connect multiple gas zones in the vertical plane is the key to fracturing treatment to jointly exploit coalbed methane and tight sandstone gas through integrative hydraulic fracturing... Whether hydraulic fractures could connect multiple gas zones in the vertical plane is the key to fracturing treatment to jointly exploit coalbed methane and tight sandstone gas through integrative hydraulic fracturing in tight sandstone–coal interbedded formations. Laboratory true triaxial hydraulic fracturing experiments were conducted on layered specimens with di erent combination types of natural sandstone and coal to simulate the propagation behavior of hydraulic fractures. The effects of the fracture initiation position, fracturing fluid viscosity and injection rate were discussed. The results showed that di erent fracture morphologies could be found. When initiating from coal seams, three patterns of fracture initiation and propagation were obtained:(1) The main hydraulic fracture initiated and propagated along the natural fractures and then diverged due to the effects of in situ stress and formed secondary fractures.(2) The hydraulic fracture initiated and propagated in the direction of the maximum horizontal stress.(3) Multiple fractures initiated and propagated at the same time. With the same fracturing fluid viscosity and injection rate, the hydraulic fractures initiating in sandstones had greater chances than those in coal seams to penetrate interfaces and enter neighboring layers. Excessively small or large fracturing fluid viscosity and injection rate would do harm to the vertical extension height of the induced fracture and improvement of the stimulated reservoir volume. Compared with operation parameters(fracturing fluid viscosity and injection rate), the natural weak planes in coals were considered to be the key factor that a ected the fracture propagation path. The experimental results would make some contributions to the development of tight sandstone–coal interbedded reservoirs. 展开更多
关键词 hydraulic fracturing fracture propagation sandstone-coal interbed LAYERED formation
下载PDF
Analysis of Emissions Profiles of Hydraulic Fracturing Engine Technologies
6
作者 William Nieuwenburg Andrew C. Nix +3 位作者 Dan Fu Tony Yeung Warren Zemlak Nick Wells 《Energy and Power Engineering》 CAS 2023年第1期1-34,共36页
Today, the oil and gas industry, and in particular hydraulic fracturing operations, have come under increasing pressure from regulators and the public to reduce emissions. As the industry evolves, oil and gas producer... Today, the oil and gas industry, and in particular hydraulic fracturing operations, have come under increasing pressure from regulators and the public to reduce emissions. As the industry evolves, oil and gas producers are in the position of evaluating alternative technologies which will support their objectives of reducing their overall emissions profile and carbon footprint. As a response, the deployment of technology and solutions to reduce emissions related to hydraulic fracturing applications has recently accelerated, creating various options to address these industry challenges. BJ Energy Solutions and West Virginia University have been working on the application and emissions characterization of various hydraulic fracturing technologies. A study was conducted to evaluate the efficiency and resultant emissions from various technologies, including natural gas reciprocating engines, diesel-natural gas dual-fuel engines, large (>24 MW) gas turbines, and direct drive turbines. The study involved the development of an emissions model with the purpose of estimating total emissions of carbon dioxide (CO<sub>2</sub>), nitrous oxide (N2O) and exhaust methane (CH<sub>4</sub>) slip, all Greenhouse Gases (GHGs), and converted to tons of CO<sub>2</sub> equivalent emissions per day of operation. The model inputs are the required Hydraulic Horsepower (HHP) based on pumping rate and pressure for various shale play scenarios. The model calculates emissions from the TITAN, which is a direct-drive turbine model fielded by BJ, using data collected following U.S. Environmental Protection Agency (EPA) testing protocols. The model also calculates and compares other hydraulic fracturing technologies utilizing published Original Equipment Manufacturer (OEM) data. Relevant EPA-regulated criteria emissions of oxides of nitrogen (NO<sub>x</sub>), Carbon Monoxide (CO) and Particulate Matter (PM) are also reported. Modeling results demonstrated that in most cases, the TITAN gas turbine system has lower total GHG emissions than conventional diesel and other next-generation technologies, and also has lower criteria emissions. The benefits of the TITAN gas turbine system compared to the other technologies stems from significantly lower methane slip, and the high-power transfer efficiency resulting from directly connecting a turbine to a reciprocating pump, despite the comparatively lower thermal efficiency. 展开更多
关键词 hydraulic fracturing Greenhouse Gas Emissions Gas Turbines natural Gas Engines Engine Efficiency EPA-Regulated Emissions
下载PDF
The effect of natural fracture on the fluid leak-off in hydraulic fracturing treatment 被引量:3
7
作者 Amir Ghaderi Jaber Taheri-Shakib Mohamad Amin Sharifnik 《Petroleum》 CSCD 2019年第1期85-89,共5页
Fluid leak-off phenomenon plays a critical role in hydraulic fracturing operation.This phenomenon can be very impressive in successful operation of hydraulic fracturing.This operation is very complex in fractured rese... Fluid leak-off phenomenon plays a critical role in hydraulic fracturing operation.This phenomenon can be very impressive in successful operation of hydraulic fracturing.This operation is very complex in fractured reservoirs due to the reaction between induced fracture and natural fractures.In this study with the cohesive element method,the effect of presence of natural fracture on the magnitude of hydraulic fracturing fluid leak-off is investigated.First of all,cohesive element and extended finite element method methods are described.The fluid flow inside hydraulic fracture and the affecting parameters on leak-off of this fluid on adjacent environment are analyzed.Then,effects of natural fracture on hydraulic fracturing direction such as deviation,leak-off and the mutual influences(which includes the changes of stress regime around the natural fracture)and also changes in pore pressure are processed.The results indicate that presence of natural fracture will cause reduction in aperture of hydraulic fracture.This decrease will lead to extension of fluid lag and eventually delaying of leak-off phenomenon.However,this effect is negligible against the positive impact due to shear and normal displacement on increasing leak-off. 展开更多
关键词 hydraulic fracturing natural fracture Leak-off INTERACTION XFEM
原文传递
Visualization of drained rock volume(DRV) in hydraulically fractured reservoirs with and without natural fractures using complex analysis methods(CAMs) 被引量:2
8
作者 Aadi Khanal Ruud Weijermars 《Petroleum Science》 SCIE CAS CSCD 2019年第3期550-577,共28页
The drainage areas(and volumes)near hydraulically fractured wells,computed and visualized in our study at high resolution,may be critically affected by the presence of natural fractures.Using a recently developed algo... The drainage areas(and volumes)near hydraulically fractured wells,computed and visualized in our study at high resolution,may be critically affected by the presence of natural fractures.Using a recently developed algorithm based on complex analysis methods(CAMs),the drained rock volume(DRV)is visualized for a range of synthetic constellations of natural fractures near hydraulic fractures.First,flow interference effects near a single hydraulic fracture are systematically investigated for a variety of natural fracture sets.The permeability contrast between the matrix and the natural fractures is increased stepwise in order to better understand the effect on the DRV.Next,a larger-scale model investigates flow interference for a full hydraulically fractured well with a variety of natural fracture sets.The time of flight contours(TOFCs)outlining the DRV are for all cases with natural fractures compared to a base case without any natural fractures.Discrete natural fractures,with different orientations,hydraulic conductivity,and fracture density,may shift the TOFC patterns in the reservoir region drained by the hydraulically fractured well,essentially shifting the location of the well’s drainage area.The CAM-based models provide a computationally efficient method to quantify and visualize the drainage in both naturally and hydraulically fractured reservoirs. 展开更多
关键词 natural fracture Drained ROCK VOLUME Drainage area DISTORTION hydraulic fractureS
下载PDF
Hydraulic fracturing induced casing shear deformation and a prediction model of casing deformation 被引量:3
9
作者 LU Qjanli LIU Zhuang +4 位作者 GUO Jianchun HE Le LI Yanchao ZENG Ji REN Shan 《Petroleum Exploration and Development》 CSCD 2021年第2期460-468,共9页
To study the casing deformation(CD)in shale gas well fracturing caused by natural fracture slip,a fracture face stress model is built based on stress analysis,and a CD prediction model is established based on complex ... To study the casing deformation(CD)in shale gas well fracturing caused by natural fracture slip,a fracture face stress model is built based on stress analysis,and a CD prediction model is established based on complex function to analyze factors affecting wellbore shear stress and CD.(1)The fracture and wellbore approach angles have significant impacts on the wellbore shear stress.In Weiyuan shale gas field,Sichuan Basin,under the common wellbore approach angle of nearly 90°,the wellbore is subjected to large shear stress and high risk of CD at the fracture approach angle range of 20° to 55° or its supplementary angle range.(2)When the fracture is partially opened,the wellbore shear stress is positively correlated with the fluid pressure,and negatively correlated with the fracture friction coefficient;when the fracture is fully opened,the wellbore shear stress is positively correlated with the natural fracture area.(3)The lower the elastic modulus and the longer the fracture length,the more serious the CD will be,and the Poisson’s ratio has a weak influence on the CD.The deformation first increases and then decreases with the increase of fracture approach angle,and reaches the maximum when the fracture approach angle is 45°.(4)At a given fracture approach angle,appropriately adjusting the wellbore approach angle can avoid high shear stress acting on wellbore,and reasonable control of the fluid pressure in the fracture can reduce the CD risk.The shear stress acting on casing is usually much greater than the shear strength of casing,so increasing casing strength or cementing quality have limited effect on reducing the risk of CD.Caliper logging data has verified that the CD prediction model is reliable,so the model can be used to establish risk analysis chart and calculate deformation value,to provide a reference for quick CD risk prediction in fracturing design. 展开更多
关键词 shale gas well hydraulic fracturing natural fracture fracture slippage casing deformation mechanism casing deformation risk control
下载PDF
Visualization of hydraulic fracture interacting with pre-existing fracture
10
作者 Zi-Xiao Xie Xiao-Guang Wu +4 位作者 Teng-Da Long Zhong-Wei Huang Gen-Sheng Li Wen-Chao Zou Zhao-Wei Sun 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3723-3735,共13页
Hydraulic fracturing is considered the main stimulation method to develop shale gas reservoirs. Due to its strong heterogeneity, the shale gas formation is typically embedded with geological discontinuities such as be... Hydraulic fracturing is considered the main stimulation method to develop shale gas reservoirs. Due to its strong heterogeneity, the shale gas formation is typically embedded with geological discontinuities such as bedding planes and natural fractures. Many researchers realized that the interaction between natural fractures and hydraulic fractures plays a crucial role in generating a complex fracture network. In this paper, true tri-axial hydraulic fracturing tests were performed on polymethyl methacrylate (PMMA), on which pre-existing fracture was pre-manufactured to simulate natural fracture. A cohesive model has been developed to verify the results of the experimental tests. The key findings demonstrate that the experimental results agreed well with the numerical simulation outcomes where three main interaction modes were observed: crossing;being arrested by opening the pre-existing fracture;being arrested without dilating the pre-existing fracture. Crossing behavior is more likely to occur with the approaching angle, horizontal stress difference, and injection rate increase. Furthermore, the higher flow rate might assist in reactivating the natural fractures where both sides of the pre-existing fractures were reactivated as the injection rate increased from 5 to 20 mL/min. Additionally, hydraulic fractures show a tendency to extend vertically rather than along the direction of maximum horizontal stress when they are first terminated at the interface. This research may contribute to the field application of hydraulic fracturing in shale gas formation. 展开更多
关键词 hydraulic fracturing natural fracture fracture propagation Interaction mode PMMA
下载PDF
Failure Patterns and Mechanisms of Hydraulic Fracture Propagation Behavior in the Presence of Naturally Cemented Fractures 被引量:1
11
作者 Daobing Wang Fang Shi +2 位作者 Hao Qin Dongliang Sun Bo Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第3期891-914,共24页
In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the pro... In this study,we use the extended finite element method(XFEM)with a consideration of junction enrichment functions to investigate the mechanics of hydraulic fractures related to naturally cemented fractures.In the proposed numerical model,the lubrication equation is adopted to describe the fluid flow within fractures.The fluid-solid coupling systems of the hydraulic fracturing problem are solved using the Newton-Raphson method.The energy release rate criterion is used to determine the cross/arrest behavior between a hydraulic fracture(HF)and a cemented natural fracture(NF).The failure patterns and mechanisms of crack propagation at the intersection of natural fractures are discussed.Simulation results show that after crossing an NF,the failure mode along the cemented NF path may change from the tensile regime to the shear or mixed-mode regime.When an advancing HF kinks back toward the matrix,the failure mode may gradually switch back to the tensile-dominated regime.Key factors,including the length of the upper/lower portion of the cemented NF,horizontal stress anisotropy,and the intersection angle of the crack propagation are investigated in detail.An uncemented or partially cemented NF will form a more complex fracture network than a cemented NF.This study provides insight into the formation mechanism of fracture networks in formations that contain cemented NF. 展开更多
关键词 hydraulic fracturing natural fractures crack propagation unconventional reservoirs mechanical interaction JOINTS
下载PDF
General criterion for intersection between hydraulic induced fractures and pre-existing natural fractures
12
作者 Zhifeng Luo Nanlin Zhang +2 位作者 Liqiang Zhao Fei Liu Nianyin Li 《Petroleum》 CSCD 2019年第3期315-320,共6页
Pre-existing natural fractures and other structurally weak planes are usually well-developed in unconventional reservoirs.When such fractures intersect with hydraulic induced fractures,they will redirect and propagate... Pre-existing natural fractures and other structurally weak planes are usually well-developed in unconventional reservoirs.When such fractures intersect with hydraulic induced fractures,they will redirect and propagate as an important mechanical principle of volume fracturing by the formation of complex fracture networks.Under the shadow effect of natural fractures and other structurally weak planes with hydraulic supported fracture stress,hydraulic fractures do not fully propagate in the direction of the maximum horizontal-principal-stress.This paper computed the stress intensity factors of hydraulic fracture types I and II by integrating the various interactions,established universally-applicable mechanical principles for the propagation behavior when a hydraulic fracture propagating in an arbitrary direction intersects with a natural fracture at an arbitrary angle,and demonstrated the mechanical principles of the intersection between hydraulic induced fractures and pre-existing natural fractures.This study proved the following conclusions:as the intersection angle between the hydraulic fracture and the maximum horizontal-principal-stress increased,the possibility of the hydraulic fracture being captured by the natural fracture with an identical approaching angle first increased and then decreased;as the net stress increased,the intersection behavior between the hydraulic fracture and the natural fracture transitioned from penetration to capture. 展开更多
关键词 hydraulic induced fracture Pre-existing natural fracture Intersection criterion Stress intensity factor Extended finite element method
原文传递
A tight sandstone multi-physical hydraulic fractures simulator study and its field application
13
作者 Yonghong Wang Binshan Ju +2 位作者 Shihao Wang Zhenzhou Yang Qing Liu 《Petroleum》 CSCD 2020年第2期198-205,共8页
During the past years,the recovery of unconventional gas formation has attracted lots of attention and achieved huge success.To produce gas from the low-permeability unconventional formations,hydraulic fracturing tech... During the past years,the recovery of unconventional gas formation has attracted lots of attention and achieved huge success.To produce gas from the low-permeability unconventional formations,hydraulic fracturing technology is essential and critical.In this paper,we present the development of a three-dimensional thermalhydraulic-mechanical numerical simulator for the simulation of hydraulic fracturing operations in tight sandstone reservoirs.Our simulator is based on integrated finite difference(IFD)method.In this method,the simulation domain is subdivided into sub domains and the governing equations are integrated over a sub domain with flux terms expressed as an integral over the sub domain boundary using the divergence theorem.Our simulator conducts coupled thermal-hydraulic-mechanical simulation of the initiation and extension of hydraulic fractures.It also calculates the mass/heat transport of injected hydraulic fluids as well as proppants.Our simulator is able to handle anisotropic formations with multiple layers.Our simulator has been validated by comparing with an analytical solution as well as Ribeiro and Sharma model.Our model can simulate fracture spacing effect on fracture profile when combining IFD with Discontinuous Displacement Method(DDM). 展开更多
关键词 Tight sandstone hydraulic fracture simulator Integrated finite difference discretization Stress contrast
原文传递
Multi-scale fractures formation and distribution in tight sandstones—a case study of Triassic Chang 8 Member in the southwestern Ordos Basin
14
作者 Gaojian XIAO Ling HU +3 位作者 Yang LUO Yujing MENG Ali Bassam Taher AL-SALAFI Haoran LIU 《Frontiers of Earth Science》 SCIE CSCD 2022年第2期483-498,共16页
Fracture system is an important factor controlling tight oil accumulation in the Triassic Chang 8 Member,southwestern Ordos Basin,China.A systematic characterization of the multi-scale natural fractures is a basis for... Fracture system is an important factor controlling tight oil accumulation in the Triassic Chang 8 Member,southwestern Ordos Basin,China.A systematic characterization of the multi-scale natural fractures is a basis for the efficient tight oil production.Based on outcrops,seismic reflections,well cores,well logs(image and conventional logging),casting thin sections,and scanning electron microscope observation,the multi-scale fractures occurrences and their influences on Chang 8 tight sandstone reservoirs are revealed.The results show that three periods of strike-slip faults and four scales of natural fractures developed,namely mega-scale(length>7×10^(7) mm),macro-scale(3.5×10^(5)<length<7×10^(7) mm),meso-scale(10<length<3.5×10^(5) mm),and micro-scale(length<10 mm)fractures.The mega-and macro-scale fractures developed by strike-slip faults are characterized by strike-segmentation and lateral zonation,which connect the source and reservoir.These scale fractures also influence the distribution and effectiveness of traps and reservoirs,which directly influence the hydrocarbon charging and distribution.The meso fractures include the tectonic,diagenetic,as well as hydrocarbon generation-related overpressure types.The meso-and micro-scale fractures improve the sandstone physical properties and also the tight oil well production performance.This integrated study helps to understand the distribution of multi-scale fractures in tight sandstones and provides a referable case and workflow for multi-scale fracture evaluation. 展开更多
关键词 natural fractures characteristics geological significance tight sandstone reservoir Upper Triassic Yanchang Formation
原文传递
Study on interaction between induced and natural fractures by extended finite element method
15
作者 DanDan Xu ZhanLi Liu +2 位作者 Zhuo Zhuang QingLei Zeng Tao Wang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2017年第2期24-37,共14页
Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural frac... Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural fractures, which is an important issue of the enigmatic fracture network formation in fracking. The criteria which control the opening of natural fracture and crossing of hydraulic fracture are tentatively presented. Influence factors on the interaction process are systematically analyzed, which include the approach angle, anisotropy of in-situ stress and fluid pressure profile. 展开更多
关键词 相互作用 天然裂缝 有限元法 诱导 压力剖面 水力压裂 裂缝网络 水力裂缝
原文传递
天然裂缝多特征组合对页岩储层渗流的影响
16
作者 刘建锋 何鑫 +4 位作者 薛福军 代晶晶 杨建雄 黄浩勇 侯正猛 《采矿与岩层控制工程学报》 EI 北大核心 2024年第1期127-136,共10页
页岩气开发需要通过水力压裂技术形成缝网系统,为了研究天然裂缝特征对页岩储层渗流的影响,基于页岩储层中的质量守恒定律、朗格缪尔吸附方程及达西定律等,推导出了用于描述储层压裂区域内气体渗流行为的数学模型;基于该数学模型对引入... 页岩气开发需要通过水力压裂技术形成缝网系统,为了研究天然裂缝特征对页岩储层渗流的影响,基于页岩储层中的质量守恒定律、朗格缪尔吸附方程及达西定律等,推导出了用于描述储层压裂区域内气体渗流行为的数学模型;基于该数学模型对引入的嵌入离散裂缝模型进行数值模拟,将模拟结果与已有文献结果,以及与现场实际生产数据进行对比,验证了模型的正确性;并在不同的天然裂缝渗透率、密集度、倾斜角组合情况下进行了页岩储层渗流数值模拟,研究了不同天然裂缝特征组合对页岩储层渗流的影响。研究结果表明:该数学模型能较好地模拟出储层情况,改变天然裂缝渗透率、密集度、倾斜角等参数均对页岩储层渗流行为有明显影响,增加天然裂缝渗透率会加大倾斜角、密集度对储层渗流的影响,对产气量的影响约10%;增加密集度会加大渗透率对储层渗流的影响,减小倾斜角对储层渗流的影响,对产气量的影响约6.3%;增大倾斜角会同时减小密集度、渗透率对储层渗流的影响,此现象可能是由于天然裂缝与水力裂缝交叉位置数量降低所致。该成果一方面可加深对不同天然裂缝特征组合与储层渗流潜在联系的科学认识;另一方面,所描述的天然裂缝特征的影响规律可对设计水力压裂施工方案、提高储层产量提供参考。 展开更多
关键词 页岩气藏 水力裂缝 流固耦合 天然裂缝 数值模拟
下载PDF
致密储层压驱焖井阶段渗吸机理分子模拟研究
17
作者 王凤娇 孟详昊 +2 位作者 刘义坤 徐贺 胡超洋 《力学学报》 EI CAS CSCD 北大核心 2024年第6期1624-1634,共11页
针对致密储层开发中存在的天然地层能量衰减快、驱替相有效波及体积不足等难题,考虑将压驱与焖井相结合的高效开发技术应用于致密储层.基于分子动力学方法从微观作用力角度分析致密储层压驱渗吸机理,进行致密储层压驱过程溶质动态迁移表... 针对致密储层开发中存在的天然地层能量衰减快、驱替相有效波及体积不足等难题,考虑将压驱与焖井相结合的高效开发技术应用于致密储层.基于分子动力学方法从微观作用力角度分析致密储层压驱渗吸机理,进行致密储层压驱过程溶质动态迁移表征,并从分子尺度对渗吸阶段进行划分.采用分子模拟方法,构建致密储层壁面-油相-驱替相三相体系,分别从体系弛豫特征、浓度分布及扩散能力和介质间相互作用能等方面分析常规水力压裂后常压驱替条件和压驱高压条件渗吸过程特征性差异,从分子尺度阐释致密储层压驱渗吸机理.研究表明:相对于常规压裂后驱替而言,压驱条件下,驱替相分子扩散系数提高20.06%,与孔隙壁面的相互作用能提高2.3倍;驱替相分子吸附层数增加,油相解吸效果更为明显,渗吸换油效率提高38.73%.此外,渗吸效率随储层温度变化的过程存在峰值,具有先上升后降低的特征;且受到壁面润湿性的影响,壁面亲水性越强渗吸效率越高.从分子尺度将焖井渗吸过程划分为3个阶段:水分子优先靠近壁面;驱替相流体与油相分子竞争吸附,将吸附态油相剥离为游离态,使其远离壁面;压驱液溶质分子进入初始油相范围,进一步置换油相,提高渗吸效率.压驱技术高压注入压驱剂可快速补充地层能量,扩大驱替相流体波及体积并提高洗油效率,在二者的协同作用下可大幅度提高渗吸驱油效率.该项研究可为致密储层高效开发提供理论参考. 展开更多
关键词 致密储层 压驱技术 焖井 渗吸机理 分子动力学
下载PDF
真三轴下砂岩水力压裂物理模拟与声发射特征
18
作者 姜永东 谢成龙 +1 位作者 宋晓 刘正杰 《地下空间与工程学报》 CSCD 北大核心 2024年第4期1145-1151,1159,共8页
为揭示水力压裂破岩机理,采用真三轴加载系统、声发射仪、高压柱塞泵建立了一套室内岩石水力压裂物理模拟系统,该系统可以研究水力压裂破岩机理。基于格里菲斯强度准则建立了岩石起裂的临界水压力和起裂位置,结果表明:当水压力远低于临... 为揭示水力压裂破岩机理,采用真三轴加载系统、声发射仪、高压柱塞泵建立了一套室内岩石水力压裂物理模拟系统,该系统可以研究水力压裂破岩机理。基于格里菲斯强度准则建立了岩石起裂的临界水压力和起裂位置,结果表明:当水压力远低于临界压力时,在水压上升期砂岩声发射特征较明显,在水压保持期砂岩声发射特征平静,产生的信号为砂岩原生闭合的微裂隙被压开;当水压力接近临界压力时,在水压上升期和保持期砂岩声发射撞击数、振幅、能量均聚增,产生的信号为砂岩破裂产生的新生裂隙扩展和贯通;裂缝起裂、扩展方向与最小主应力方向垂直,原生裂缝控制了砂岩的裂缝起裂和扩展方向。本研究成果可为煤矿细砂岩厚老顶强矿压水力压裂治理提供参考。 展开更多
关键词 砂岩 水力压裂 物理模拟 声发射 电子计算机断层扫描
下载PDF
深层天然裂缝性页岩储层水力压裂光纤监测远场应变分析
19
作者 桑宇 隋微波 +6 位作者 曾波 宋毅 黄浩勇 郭欢 杨艳明 宋佳忆 杜广浩 《天然气工业》 EI CAS CSCD 北大核心 2024年第5期56-67,共12页
四川盆地南部地区(下文简称川南地区)深层(埋深大于4000 m)页岩储层天然裂缝发育,地应力分布复杂,水力压裂过程中套管变形等问题严重制约了页岩气资源的高效开发。为了解决深层页岩储层天然裂缝压裂过程中远场应变监测问题,采用邻井光纤... 四川盆地南部地区(下文简称川南地区)深层(埋深大于4000 m)页岩储层天然裂缝发育,地应力分布复杂,水力压裂过程中套管变形等问题严重制约了页岩气资源的高效开发。为了解决深层页岩储层天然裂缝压裂过程中远场应变监测问题,采用邻井光纤(DAS)应变监测技术对泸州区块A平台2口井拉链式压裂过程进行监测,并结合压裂施工设计和储层特征对监测结果进行分析和讨论。研究结果表明:①300~350 m监测井距和泵送式套内光纤布设方式可以对远场裂缝窜通演化评估提供大量有利数据,但对压裂井主体改造区域提供的相关信息较少;②同一平台不同井压裂时远场应变响应差异可能很大,高风险井的压裂施工参数设计对远场裂缝窜通起到了关键影响作用,低风险井主要表现为跟随作用,裂缝窜通区域一旦形成,极易演变成2口压裂井共同的裂缝窜通区;③远场应变响应区域与当前压裂段相对位置可能相差200~300 m,同井不同段间的应变沟通会提前形成,与当前压裂段可能相差400~500 m;④深层页岩储层天然裂缝压裂形成的远场裂缝形态具有全新特征,包括普遍性的倾斜裂缝和挠曲段地层附近的水平层理缝2类情况。结论认为,低频DAS应变监测技术提供了深层页岩储层天然裂缝压裂过程中远场应变演化分析的新方法,可与地质工程一体化压裂设计方案、套变机理与防控研究等工作结合,助力该区深层页岩气的规模效益开发。 展开更多
关键词 川南地区 深层页岩气 天然裂缝 水力压裂 套管变形 DAS 远场应变 裂缝窜通
下载PDF
天然裂缝对水力压裂煤的起裂及扩展试验研究
20
作者 蒋长宝 杨毅毫 +3 位作者 刘辉辉 郭建泉 付银兰 吴家耀 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第5期92-101,共10页
水力压裂是提高低渗透高瓦斯煤层抽采效率和瓦斯产量的有效方法之一。由于煤层中存在丰富的天然裂缝,天然裂缝与水力裂缝相互作用会使水力裂缝的起裂和扩展形式呈现出复杂多样性,从而影响煤层的增透效果。为研究水力压裂煤在天然裂缝作... 水力压裂是提高低渗透高瓦斯煤层抽采效率和瓦斯产量的有效方法之一。由于煤层中存在丰富的天然裂缝,天然裂缝与水力裂缝相互作用会使水力裂缝的起裂和扩展形式呈现出复杂多样性,从而影响煤层的增透效果。为研究水力压裂煤在天然裂缝作用下的起裂和扩展规律,利用自主研发的多功能真三轴流固耦合试验系统开展了煤的水力压裂试验。基于“孔壁应力集中诱发拉伸破裂”理论研究了水力压裂煤的裂缝起裂规律,并结合断裂力学从细观角度揭示了水力压裂煤的裂缝扩展机制。研究结果表明:天然裂缝的存在会诱导水力裂缝沿着天然裂缝方向扩展,极大降低了煤岩的起裂压力。不含明显天然裂缝煤岩压裂所需的起裂压力与根据拉伸破坏起裂准则计算的理论起裂压力结果相近,符合“孔壁应力集中诱发拉伸破裂”准则;含明显天然裂缝煤岩压裂所需的起裂压力均小于根据拉伸破坏起裂准则计算的理论起裂压力,且当天然裂缝方向垂直于最小主应力方向时,所需的起裂压力较小,为3.355 MPa;当天然裂缝平行于最小主应力时,所需的起裂压力仅大于最小主应力,为7.902 MPa。水力裂缝类型为I型时,不含明显天然裂缝煤岩的实测最小和最大扩展压力值均大于理论计算最小和最大扩展压力值,差值范围分别为2.043~6.845 MPa和3.951~8.576 MPa;当煤岩含明显天然裂缝且天然裂缝方向平行于X方向时,水平应力差的存在将引起煤岩的实测扩展压力值小于理论计算的扩展压力值。水力裂缝类型为Ⅱ型或I-Ⅱ型时,随着水力裂缝长度的增加,裂缝扩展所需压力逐渐减小。 展开更多
关键词 天然裂缝 地应力 水力压裂 裂缝扩展 纳米压痕
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部